Java Code Examples for burlap.domain.singleagent.gridworld.GridWorldDomain#setTf()

The following examples show how to use burlap.domain.singleagent.gridworld.GridWorldDomain#setTf() . You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: GridWorldDQN.java    From burlap_caffe with Apache License 2.0 6 votes vote down vote up
public GridWorldDQN(String solverFile, double gamma) {

        //create the domain
        gwdg = new GridWorldDomain(11, 11);
        gwdg.setMapToFourRooms();
        rf = new UniformCostRF();
        tf = new SinglePFTF(PropositionalFunction.findPF(gwdg.generatePfs(), GridWorldDomain.PF_AT_LOCATION));
        gwdg.setRf(rf);
        gwdg.setTf(tf);
        domain = gwdg.generateDomain();

        goalCondition = new TFGoalCondition(tf);

        //set up the initial state of the task
        initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0"));

        //set up the state hashing system for tabular algorithms
        hashingFactory = new SimpleHashableStateFactory();

        //set up the environment for learners algorithms
        env = new SimulatedEnvironment(domain, initialState);

        dqn = new DQN(solverFile, actionSet, new NNGridStateConverter(), gamma);
    }
 
Example 2
Source File: BasicBehavior.java    From burlap_examples with MIT License 6 votes vote down vote up
public BasicBehavior(){
		gwdg = new GridWorldDomain(11, 11);
		gwdg.setMapToFourRooms();
		tf = new GridWorldTerminalFunction(10, 10);
		gwdg.setTf(tf);
		goalCondition = new TFGoalCondition(tf);
		domain = gwdg.generateDomain();

		initialState = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0"));
		hashingFactory = new SimpleHashableStateFactory();

		env = new SimulatedEnvironment(domain, initialState);


//		VisualActionObserver observer = new VisualActionObserver(domain, GridWorldVisualizer.getVisualizer(gwdg.getMap()));
//		observer.initGUI();
//		env.addObservers(observer);
	}
 
Example 3
Source File: VITutorial.java    From burlap_examples with MIT License 5 votes vote down vote up
public static void main(String [] args){

		GridWorldDomain gwd = new GridWorldDomain(11, 11);
		gwd.setTf(new GridWorldTerminalFunction(10, 10));
		gwd.setMapToFourRooms();

		//only go in intended directon 80% of the time
		gwd.setProbSucceedTransitionDynamics(0.8);

		SADomain domain = gwd.generateDomain();

		//get initial state with agent in 0,0
		State s = new GridWorldState(new GridAgent(0, 0));

		//setup vi with 0.99 discount factor, a value
		//function initialization that initializes all states to value 0, and which will
		//run for 30 iterations over the state space
		VITutorial vi = new VITutorial(domain, 0.99, new SimpleHashableStateFactory(),
				new ConstantValueFunction(0.0), 30);

		//run planning from our initial state
		Policy p = vi.planFromState(s);

		//evaluate the policy with one roll out visualize the trajectory
		Episode ea = PolicyUtils.rollout(p, s, domain.getModel());

		Visualizer v = GridWorldVisualizer.getVisualizer(gwd.getMap());
		new EpisodeSequenceVisualizer(v, domain, Arrays.asList(ea));

	}
 
Example 4
Source File: QLTutorial.java    From burlap_examples with MIT License 5 votes vote down vote up
public static void main(String[] args) {

		GridWorldDomain gwd = new GridWorldDomain(11, 11);
		gwd.setMapToFourRooms();
		gwd.setProbSucceedTransitionDynamics(0.8);
		gwd.setTf(new GridWorldTerminalFunction(10, 10));

		SADomain domain = gwd.generateDomain();

		//get initial state with agent in 0,0
		State s = new GridWorldState(new GridAgent(0, 0));

		//create environment
		SimulatedEnvironment env = new SimulatedEnvironment(domain, s);

		//create Q-learning
		QLTutorial agent = new QLTutorial(domain, 0.99, new SimpleHashableStateFactory(),
				new ConstantValueFunction(), 0.1, 0.1);

		//run Q-learning and store results in a list
		List<Episode> episodes = new ArrayList<Episode>(1000);
		for(int i = 0; i < 1000; i++){
			episodes.add(agent.runLearningEpisode(env));
			env.resetEnvironment();
		}

		Visualizer v = GridWorldVisualizer.getVisualizer(gwd.getMap());
		new EpisodeSequenceVisualizer(v, domain, episodes);

	}
 
Example 5
Source File: PlotTest.java    From burlap_examples with MIT License 2 votes vote down vote up
public static void main(String [] args){

		GridWorldDomain gw = new GridWorldDomain(11,11); //11x11 grid world
		gw.setMapToFourRooms(); //four rooms layout
		gw.setProbSucceedTransitionDynamics(0.8); //stochastic transitions with 0.8 success rate

		//ends when the agent reaches a location
		final TerminalFunction tf = new SinglePFTF(
				PropositionalFunction.findPF(gw.generatePfs(), GridWorldDomain.PF_AT_LOCATION));

		//reward function definition
		final RewardFunction rf = new GoalBasedRF(new TFGoalCondition(tf), 5., -0.1);

		gw.setTf(tf);
		gw.setRf(rf);


		final OOSADomain domain = gw.generateDomain(); //generate the grid world domain

		//setup initial state
		GridWorldState s = new GridWorldState(new GridAgent(0, 0), new GridLocation(10, 10, "loc0"));



		//initial state generator
		final ConstantStateGenerator sg = new ConstantStateGenerator(s);


		//set up the state hashing system for looking up states
		final SimpleHashableStateFactory hashingFactory = new SimpleHashableStateFactory();


		/**
		 * Create factory for Q-learning agent
		 */
		LearningAgentFactory qLearningFactory = new LearningAgentFactory() {

			public String getAgentName() {
				return "Q-learning";
			}

			public LearningAgent generateAgent() {
				return new QLearning(domain, 0.99, hashingFactory, 0.3, 0.1);
			}
		};

		//define learning environment
		SimulatedEnvironment env = new SimulatedEnvironment(domain, sg);

		//define experiment
		LearningAlgorithmExperimenter exp = new LearningAlgorithmExperimenter(env,
				10, 100, qLearningFactory);

		exp.setUpPlottingConfiguration(500, 250, 2, 1000, TrialMode.MOST_RECENT_AND_AVERAGE,
				PerformanceMetric.CUMULATIVE_STEPS_PER_EPISODE, PerformanceMetric.AVERAGE_EPISODE_REWARD);


		//start experiment
		exp.startExperiment();


	}