Java Code Examples for org.nd4j.linalg.api.ndarray.INDArray#addRowVector()
The following examples show how to use
org.nd4j.linalg.api.ndarray.INDArray#addRowVector() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: LayerOpValidation.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Test public void testBiasAdd() { Nd4j.getRandom().setSeed(12345); SameDiff sameDiff = SameDiff.create(); INDArray input = Nd4j.linspace(1, 8, 8, DataType.DOUBLE).reshape(new long[]{2, 4}); INDArray b = Nd4j.linspace(1, 4, 4, DataType.DOUBLE).divi(4); SDVariable sdInput = sameDiff.var("input", input); SDVariable sdBias = sameDiff.var("bias", b); SDVariable res = sameDiff.nn().biasAdd(sdInput, sdBias, true); SDVariable loss = sameDiff.standardDeviation(res, true); INDArray exp = input.addRowVector(b); TestCase tc = new TestCase(sameDiff) .gradientCheck(true) .expectedOutput(res.name(), exp); String err = OpValidation.validate(tc); assertNull(err); }
Example 2
Source File: SameDiffTests.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void testDenseLayerForwardPass() { Nd4j.getRandom().setSeed(12345); SameDiff sd = SameDiff.create(); INDArray iInput = Nd4j.rand(3, 4); INDArray iWeights = Nd4j.rand(4, 5); INDArray iBias = Nd4j.rand(1, 5); SDVariable input = sd.var("input", iInput); SDVariable weights = sd.var("weights", iWeights); SDVariable bias = sd.var("bias", iBias); SDVariable mmul = sd.mmul("mmul", input, weights); SDVariable z = mmul.add("z", bias); SDVariable out = sd.sigmoid("out", z); INDArray expMmul = iInput.mmul(iWeights); INDArray expZ = expMmul.addRowVector(iBias); INDArray expOut = Transforms.sigmoid(expZ, true); sd.exec(); assertEquals(expMmul, mmul.getArr()); assertEquals(expZ, z.getArr()); assertEquals(expOut, out.getArr()); }
Example 3
Source File: OpExecutionerTestsC.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void testAddiRowVector() { INDArray arr = Nd4j.linspace(1, 6, 6).reshape(2, 3); INDArray arr2 = Nd4j.linspace(1, 3, 3); INDArray assertion = Nd4j.create(new double[] {2, 4, 6, 5, 7, 9}).reshape(2, 3); INDArray test = arr.addRowVector(arr2); assertEquals(assertion, test); }
Example 4
Source File: OpExecutionerTests.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void testAddBroadcast() { INDArray arr = Nd4j.linspace(1, 6, 6).reshape('f', 2, 3); INDArray arrRow = Nd4j.create(new double[] {1, 2, 3}); INDArray assertion = Nd4j.create(new double[] {2, 3, 5, 6, 8, 9}, new int[] {2, 3}, 'f'); INDArray add = arr.addRowVector(arrRow); assertEquals(assertion, add); INDArray colVec = Nd4j.linspace(1, 2, 2).reshape(2, 1); INDArray colAssertion = Nd4j.create(new double[] {2, 4, 4, 6, 6, 8}, new int[] {2, 3}, 'f'); INDArray colTest = arr.addColumnVector(colVec); assertEquals(colAssertion, colTest); }
Example 5
Source File: SameDiffTests.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testDenseLayerForwardPass() { Nd4j.getRandom().setSeed(12345); SameDiff sd = SameDiff.create(); INDArray iInput = Nd4j.rand(3, 4); INDArray iWeights = Nd4j.rand(4, 5); INDArray iBias = Nd4j.rand(1, 5); SDVariable input = sd.var("input", iInput); SDVariable weights = sd.var("weights", iWeights); SDVariable bias = sd.var("bias", iBias); SDVariable mmul = sd.mmul("mmul", input, weights); SDVariable z = mmul.add("z", bias); SDVariable out = sd.nn().sigmoid("out", z); INDArray expMmul = iInput.mmul(iWeights); INDArray expZ = expMmul.addRowVector(iBias); INDArray expOut = Transforms.sigmoid(expZ, true); Map<String,INDArray> m = sd.outputAll(Collections.emptyMap()); assertEquals(expMmul, m.get(mmul.name())); assertEquals(expZ, m.get(z.name())); assertEquals(expOut, m.get(out.name())); }
Example 6
Source File: OpExecutionerTestsC.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testAddiRowVector() { INDArray arr = Nd4j.linspace(1, 6, 6, DataType.DOUBLE).reshape(2, 3); INDArray arr2 = Nd4j.linspace(1, 3, 3, DataType.DOUBLE); INDArray assertion = Nd4j.create(new double[] {2, 4, 6, 5, 7, 9}).reshape(2, 3); INDArray test = arr.addRowVector(arr2); assertEquals(assertion, test); }
Example 7
Source File: OpExecutionerTests.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testAddBroadcast() { INDArray arr = Nd4j.linspace(1, 6, 6, DataType.DOUBLE).reshape('f', 2, 3); INDArray arrRow = Nd4j.create(new double[] {1, 2, 3}); INDArray assertion = Nd4j.create(new double[] {2, 3, 5, 6, 8, 9}, new int[] {2, 3}, 'f'); INDArray add = arr.addRowVector(arrRow); assertEquals(assertion, add); INDArray colVec = Nd4j.linspace(1, 2, 2, DataType.DOUBLE).reshape(2, 1); INDArray colAssertion = Nd4j.create(new double[] {2, 4, 4, 6, 6, 8}, new int[] {2, 3}, 'f'); INDArray colTest = arr.addColumnVector(colVec); assertEquals(colAssertion, colTest); }
Example 8
Source File: TestSessions.java From deeplearning4j with Apache License 2.0 | 3 votes |
@Test public void testInferenceSessionBasic(){ //So far: trivial test to check execution order SameDiff sd = SameDiff.create(); SDVariable ph1 = sd.placeHolder("x", DataType.FLOAT, 3,4); SDVariable ph2 = sd.placeHolder("y", DataType.FLOAT, 1,4); SDVariable out = ph1.add("out", ph2); //NOTE: normally sessions are internal and completely hidden from users InferenceSession is = new InferenceSession(sd); INDArray x = Nd4j.linspace(1, 12, 12).castTo(DataType.FLOAT).reshape(3,4); INDArray y = Nd4j.linspace(0.1, 0.4, 4, DataType.DOUBLE).castTo(DataType.FLOAT).reshape(1,4); INDArray outExp = x.addRowVector(y); Map<String,INDArray> m = new HashMap<>(); m.put("x", x); m.put("y", y); Map<String,INDArray> outMap = is.output(Collections.singletonList("out"), m, null, Collections.<String>emptyList(), null, At.defaultAt(Operation.TRAINING)); assertEquals(1, outMap.size()); assertEquals(outExp, outMap.get("out")); }