Java Code Examples for org.nd4j.linalg.api.ndarray.INDArray#diviColumnVector()
The following examples show how to use
org.nd4j.linalg.api.ndarray.INDArray#diviColumnVector() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: MiscOpValidation.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testClipByNorm(){ //Expected: if array.norm2(1) is less than 1.0, not modified //Otherwise: array.tad(x,1) = array.tad(x,1) * 1.0 / array.tad(x,1).norm2() Nd4j.getRandom().setSeed(12345); INDArray arr = Nd4j.rand(3,5); INDArray norm2_1 = arr.norm2(1); arr.diviColumnVector(norm2_1); norm2_1 = arr.norm2(1); assertEquals(Nd4j.ones(3), norm2_1); INDArray scale = Nd4j.create(new double[]{1.1, 1.0, 0.9}, new int[]{3}); arr.muliColumnVector(scale); norm2_1 = arr.norm2(1); INDArray out = Nd4j.create(arr.shape()); Nd4j.getExecutioner().exec(DynamicCustomOp.builder("clipbynorm") .addInputs(arr) .addOutputs(out) .addIntegerArguments(1) .addFloatingPointArguments(1.0) .build()); INDArray norm2_1b = out.norm2(1); INDArray exp = Nd4j.create(new double[]{1.0, 1.0, norm2_1.getDouble(2)}, new int[]{3}); assertEquals(exp, norm2_1b); }
Example 2
Source File: Nd4jMatrix.java From jstarcraft-ai with Apache License 2.0 | 5 votes |
@Override public MathMatrix divideColumnVector(MathVector vector) { if (vector instanceof Nd4jVector) { Nd4jEnvironmentThread thread = EnvironmentThread.getThread(Nd4jEnvironmentThread.class); try (MemoryWorkspace workspace = thread.getSpace()) { INDArray thisArray = this.getArray(); INDArray thatArray = Nd4jVector.class.cast(vector).getArray(); thisArray.diviColumnVector(thatArray); return this; } } else { return MathMatrix.super.divideColumnVector(vector); } }
Example 3
Source File: NativeOpExecutionerTest.java From nd4j with Apache License 2.0 | 5 votes |
@Test public void testDebugEdgeCase2(){ DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE); INDArray l1 = Nd4j.create(new double[]{-0.2585039112684677,-0.005179485353710878,0.4348343401770497,0.020356532375728764,-0.1970793298488186}); INDArray l2 = Nd4j.create(2,l1.size(1)); INDArray p1 = Nd4j.create(new double[]{1.3979850406519119,0.6169451410155852,1.128993957530918,0.21000426084450596,0.3171215178932696}); INDArray p2 = Nd4j.create(2, p1.size(1)); for( int i=0; i<2; i++ ){ l2.putRow(i, l1); p2.putRow(i, p1); } INDArray norm2_1 = l1.norm2(1); INDArray temp1 = p1.mul(l1); INDArray out1 = temp1.diviColumnVector(norm2_1); INDArray norm2_2 = l2.norm2(1); INDArray temp2 = p2.mul(l2); INDArray out2 = temp2.diviColumnVector(norm2_2); System.out.println("norm2_1: " + Arrays.toString(norm2_1.data().asDouble())); System.out.println("norm2_2: " + Arrays.toString(norm2_2.data().asDouble())); System.out.println("temp1: " + Arrays.toString(temp1.data().asDouble())); System.out.println("temp2: " + Arrays.toString(temp2.data().asDouble())); //Outputs here should be identical: System.out.println(Arrays.toString(out1.data().asDouble())); System.out.println(Arrays.toString(out2.getRow(0).dup().data().asDouble())); }
Example 4
Source File: NDLossTest.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Test public void testCosineDistance() { SameDiff sd = SameDiff.create(); int nOut = 4; int minibatch = 10; SDVariable predictions = sd.var("in", DataType.DOUBLE, minibatch, nOut); SDVariable labels = sd.var("labels", DataType.DOUBLE, -1, nOut); INDArray wArr = Nd4j.create(new double[][]{ {0, 0, 0, 0}, {0, 0, 1, 1}, {1, 1, 0, 0}, {1, 1, 1, 1}, {1, 1, 1, 1}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}, {2, 2, 2, 2}}); SDVariable w = sd.var("weights", wArr); LossReduce reduction = LossReduce.MEAN_BY_NONZERO_WEIGHT_COUNT; INDArray predictionsArr = Nd4j.randn(DataType.DOUBLE, minibatch, nOut); INDArray labelsArr = Nd4j.randn(DataType.DOUBLE, minibatch, nOut); predictionsArr.diviColumnVector(predictionsArr.norm2(1)); labelsArr.diviColumnVector(labelsArr.norm2(1)); SDVariable loss = sd.loss().cosineDistance("loss", labels, predictions, w, reduction, 0); SDVariable loss2 = sd.loss().cosineDistance("loss2", labels, predictions, null, reduction, 0); sd.associateArrayWithVariable(predictionsArr, predictions); sd.associateArrayWithVariable(labelsArr, labels); INDArray y_exp = loss.eval(); INDArray y_exp2 = loss2.eval(); INDArray y = Nd4j.loss().cosineDistance(labelsArr, predictionsArr, wArr, reduction, 0); INDArray y2 = Nd4j.loss().cosineDistance(labelsArr, predictionsArr, null, reduction, 0); assertEquals(y_exp, y); assertEquals(y_exp2, y2); }
Example 5
Source File: LossCosineProximity.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray yhat = activationFn.getActivation(preOutput.dup(), true); INDArray yL2norm = labels.norm2(1); INDArray yhatL2norm = yhat.norm2(1); INDArray yhatL2normSq = yhatL2norm.mul(yhatL2norm); //Note: This is not really the L1 norm since I am not taking abs values INDArray yhatDotyL1norm = labels.mul(yhat).sum(true,1); INDArray dLda = labels.mulColumnVector(yhatL2normSq); dLda.subi(yhat.mulColumnVector(yhatDotyL1norm)); // transform vals to avoid nans before div yL2norm = Transforms.max(yL2norm, Nd4j.EPS_THRESHOLD, false); yhatL2norm = Transforms.max(yhatL2norm, Nd4j.EPS_THRESHOLD, false); yhatL2normSq = Transforms.max(yhatL2normSq, Nd4j.EPS_THRESHOLD, false); dLda.diviColumnVector(yL2norm); dLda.diviColumnVector(yhatL2norm.mul(yhatL2normSq)); dLda.muli(-1); //dL/dz INDArray gradients = activationFn.backprop(preOutput, dLda).getFirst(); //TODO loss functions with params if (mask != null) { gradients.muliColumnVector(mask); } return gradients; }
Example 6
Source File: LossCosineProximity.java From deeplearning4j with Apache License 2.0 | 5 votes |
/** * * @param labels * @param preOutput * @param activationFn * @param mask * @return */ public INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype /* mean of -(y.dot(yhat)/||y||*||yhat||) */ INDArray postOutput = activationFn.getActivation(preOutput.dup(), true); INDArray yhatmag = postOutput.norm2(1); INDArray ymag = labels.norm2(1); yhatmag = Transforms.max(yhatmag, Nd4j.EPS_THRESHOLD, false); ymag = Transforms.max(ymag, Nd4j.EPS_THRESHOLD, false); INDArray scoreArr = postOutput.mul(labels); scoreArr.diviColumnVector(yhatmag); scoreArr.diviColumnVector(ymag); if (mask != null) { if (!mask.isColumnVector()) { //Per-output masking doesn't really make sense for cosine proximity throw new UnsupportedOperationException("Expected column vector mask array for LossCosineProximity." + " Got mask array with shape " + Arrays.toString(mask.shape()) + "; per-output masking is not " + "supported for LossCosineProximity"); } scoreArr.muliColumnVector(mask); } return scoreArr.muli(-1); }
Example 7
Source File: ROCTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testRocBinaryMerge(){ Nd4j.getRandom().setSeed(12345); ROCBinary roc = new ROCBinary(); ROCBinary roc1 = new ROCBinary(); ROCBinary roc2 = new ROCBinary(); int nOut = 5; for( int i=0; i<10; i++ ){ INDArray labels = Nd4j.getExecutioner().exec(new BernoulliDistribution(Nd4j.createUninitialized(3, nOut),0.5)); INDArray out = Nd4j.rand(3, nOut); out.diviColumnVector(out.sum(1)); roc.eval(labels, out); if(i % 2 == 0){ roc1.eval(labels, out); } else { roc2.eval(labels, out); } } for( int i=0; i<nOut; i++ ) { roc1.calculateAUC(i); roc1.calculateAUCPR(i); roc2.calculateAUC(i); roc2.calculateAUCPR(i); } roc1.merge(roc2); for( int i=0; i<nOut; i++ ) { double aucExp = roc.calculateAUC(i); double auprc = roc.calculateAUCPR(i); double aucAct = roc1.calculateAUC(i); double auprcAct = roc1.calculateAUCPR(i); assertEquals(aucExp, aucAct, 1e-6); assertEquals(auprc, auprcAct, 1e-6); } }
Example 8
Source File: ROCTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testRocMerge(){ Nd4j.getRandom().setSeed(12345); ROC roc = new ROC(); ROC roc1 = new ROC(); ROC roc2 = new ROC(); int nOut = 2; Random r = new Random(12345); for( int i=0; i<10; i++ ){ INDArray labels = Nd4j.zeros(3, nOut); for( int j=0; j<3; j++ ){ labels.putScalar(j, r.nextInt(nOut), 1.0 ); } INDArray out = Nd4j.rand(3, nOut); out.diviColumnVector(out.sum(1)); roc.eval(labels, out); if(i % 2 == 0){ roc1.eval(labels, out); } else { roc2.eval(labels, out); } } roc1.calculateAUC(); roc1.calculateAUCPR(); roc2.calculateAUC(); roc2.calculateAUCPR(); roc1.merge(roc2); double aucExp = roc.calculateAUC(); double auprc = roc.calculateAUCPR(); double aucAct = roc1.calculateAUC(); double auprcAct = roc1.calculateAUCPR(); assertEquals(aucExp, aucAct, 1e-6); assertEquals(auprc, auprcAct, 1e-6); }
Example 9
Source File: ROCTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testROCMultiMerging() { int nArrays = 10; int minibatch = 64; int nROCs = 3; int nClasses = 3; for (int steps : new int[] {20, 0}) { //0 steps: exact // int steps = 20; Nd4j.getRandom().setSeed(12345); Random r = new Random(12345); List<ROCMultiClass> rocList = new ArrayList<>(); for (int i = 0; i < nROCs; i++) { rocList.add(new ROCMultiClass(steps)); } ROCMultiClass single = new ROCMultiClass(steps); for (int i = 0; i < nArrays; i++) { INDArray p = Nd4j.rand(minibatch, nClasses); p.diviColumnVector(p.sum(1)); INDArray l = Nd4j.zeros(minibatch, nClasses); for (int j = 0; j < minibatch; j++) { l.putScalar(j, r.nextInt(nClasses), 1.0); } single.eval(l, p); ROCMultiClass other = rocList.get(i % rocList.size()); other.eval(l, p); } ROCMultiClass first = rocList.get(0); for (int i = 1; i < nROCs; i++) { first.merge(rocList.get(i)); } for (int i = 0; i < nClasses; i++) { assertEquals(single.calculateAUC(i), first.calculateAUC(i), 1e-6); assertEquals(single.getRocCurve(i), first.getRocCurve(i)); } } }
Example 10
Source File: ROCTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testROCMerging2() { int nArrays = 10; int minibatch = 64; int exactAllocBlockSize = 10; int nROCs = 3; int steps = 0; //Exact Nd4j.getRandom().setSeed(12345); Random r = new Random(12345); List<ROC> rocList = new ArrayList<>(); for (int i = 0; i < nROCs; i++) { rocList.add(new ROC(steps, true, exactAllocBlockSize)); } ROC single = new ROC(steps); for (int i = 0; i < nArrays; i++) { INDArray p = Nd4j.rand(minibatch, 2); p.diviColumnVector(p.sum(1)); INDArray l = Nd4j.zeros(minibatch, 2); for (int j = 0; j < minibatch; j++) { l.putScalar(j, r.nextInt(2), 1.0); } single.eval(l, p); ROC other = rocList.get(i % rocList.size()); other.eval(l, p); } ROC first = rocList.get(0); for (int i = 1; i < nROCs; i++) { first.merge(rocList.get(i)); } double singleAUC = single.calculateAUC(); assertTrue(singleAUC >= 0.0 && singleAUC <= 1.0); assertEquals(singleAUC, first.calculateAUC(), 1e-6); assertEquals(single.getRocCurve(), first.getRocCurve()); }
Example 11
Source File: LossMixtureDensity.java From deeplearning4j with Apache License 2.0 | 4 votes |
/** * This method returns the gradient of the cost function with respect to the * output from the previous layer. For this cost function, the gradient * is derived from Bishop's paper "Mixture Density Networks" (1994) which * gives an elegant closed-form expression for the derivatives with respect * to each of the output components. * @param labels Labels to train on. * @param preOutput Output of neural network before applying the final activation function. * @param activationFn Activation function of output layer. * @param mask Mask to apply to gradients. * @return Gradient of cost function with respect to preOutput parameters. */ @Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype long nSamples = labels.size(0); INDArray output = activationFn.getActivation(preOutput.dup(), false); MixtureDensityComponents mdc = extractComponents(output); INDArray gradient = Nd4j.zeros(nSamples, preOutput.columns()); INDArray labelsMinusMu = labelsMinusMu(labels, mdc.mu); INDArray labelsMinusMuSquared = labelsMinusMu.mul(labelsMinusMu).sum(2); // This computes pi_i, see Bishop equation (30). // See http://www.plsyard.com/dealing-overflow-and-underflow-in-softmax-function/ // this post for why we calculate the pi_i in this way. // With the exponential function here, we have to be very careful // about overflow/underflow considerations even with // fairly intermediate values. Subtracting the max // here helps to ensure over/underflow does not happen here. // This isn't exactly a softmax because there's an 'alpha' coefficient // here, but the technique works, nonetheless. INDArray variance = mdc.sigma.mul(mdc.sigma); INDArray minustwovariance = variance.mul(2).negi(); INDArray normalPart = mdc.alpha.div(Transforms.pow(mdc.sigma.mul(SQRT_TWO_PI), mLabelWidth)); INDArray exponent = labelsMinusMuSquared.div(minustwovariance); INDArray exponentMax = exponent.max(1); exponent.subiColumnVector(exponentMax); INDArray pi = Transforms.exp(exponent).muli(normalPart); INDArray piDivisor = pi.sum(true,1); pi.diviColumnVector(piDivisor); // See Bishop equation (35) //INDArray dLdZAlpha = Nd4j.zeros(nSamples, nLabelsPerSample, mMixturesPerLabel); //mdc.alpha.sub(pi); INDArray dLdZAlpha = mdc.alpha.sub(pi); // See Bishop equation (38) INDArray dLdZSigma = (labelsMinusMuSquared.div(variance).subi(mLabelWidth)).muli(-1).muli(pi); // See Bishop equation (39) // This turned out to be way less efficient than // the simple 'for' loop here. //INDArray dLdZMu = pi // .div(variance) // .reshape(nSamples, mMixtures, 1) // .repeat(2, mLabelWidth) // .muli(labelsMinusMu) // .negi() // .reshape(nSamples, mMixtures * mLabelWidth); INDArray dLdZMu = Nd4j.create(nSamples, mMixtures, mLabelWidth); for (int k = 0; k < mLabelWidth; k++) { dLdZMu.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.point(k)}, labelsMinusMu.get(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.all(), NDArrayIndex.point(k)}).muli(pi).divi(variance).negi()); } dLdZMu = dLdZMu.reshape(nSamples, mMixtures * mLabelWidth); // Place components of gradient into gradient holder. gradient.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(0, mMixtures)}, dLdZAlpha); gradient.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(mMixtures, mMixtures * 2)}, dLdZSigma); gradient.put(new INDArrayIndex[] {NDArrayIndex.all(), NDArrayIndex.interval(mMixtures * 2, (mLabelWidth + 2) * mMixtures)}, dLdZMu); INDArray gradients = activationFn.backprop(preOutput, gradient).getFirst(); if (mask != null) { LossUtil.applyMask(gradients, mask); } return gradients; }
Example 12
Source File: ROCTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testCompare2Vs3Classes() { //ROC multi-class: 2 vs. 3 classes should be the same, if we add two of the classes together... //Both methods implement one vs. all ROC/AUC in different ways int nExamples = 200; INDArray predictions3 = Nd4j.rand(nExamples, 3); INDArray tempSum = predictions3.sum(1); predictions3.diviColumnVector(tempSum); INDArray labels3 = Nd4j.create(nExamples, 3); Random r = new Random(12345); for (int i = 0; i < nExamples; i++) { labels3.putScalar(i, r.nextInt(3), 1.0); } INDArray predictions2 = Nd4j.zeros(nExamples, 2); predictions2.getColumn(0).assign(predictions3.getColumn(0)); predictions2.getColumn(0).addi(predictions3.getColumn(1)); predictions2.getColumn(1).addi(predictions3.getColumn(2)); INDArray labels2 = Nd4j.zeros(nExamples, 2); labels2.getColumn(0).assign(labels3.getColumn(0)); labels2.getColumn(0).addi(labels3.getColumn(1)); labels2.getColumn(1).addi(labels3.getColumn(2)); for (int numSteps : new int[] {30, 0}) { //Steps = 0: exact ROCMultiClass rocMultiClass3 = new ROCMultiClass(numSteps); ROCMultiClass rocMultiClass2 = new ROCMultiClass(numSteps); rocMultiClass3.eval(labels3, predictions3); rocMultiClass2.eval(labels2, predictions2); double auc3 = rocMultiClass3.calculateAUC(2); double auc2 = rocMultiClass2.calculateAUC(1); assertEquals(auc2, auc3, 1e-6); RocCurve c3 = rocMultiClass3.getRocCurve(2); RocCurve c2 = rocMultiClass2.getRocCurve(1); assertArrayEquals(c2.getThreshold(), c3.getThreshold(), 1e-6); assertArrayEquals(c2.getFpr(), c3.getFpr(), 1e-6); assertArrayEquals(c2.getTpr(), c3.getTpr(), 1e-6); } }
Example 13
Source File: CenterLossOutputLayer.java From deeplearning4j with Apache License 2.0 | 4 votes |
/** Returns tuple: {Gradient,Delta,Output} given preOut */ private Pair<Gradient, INDArray> getGradientsAndDelta(INDArray preOut, LayerWorkspaceMgr workspaceMgr) { ILossFunction lossFunction = layerConf().getLossFn(); INDArray labels2d = getLabels2d(workspaceMgr, ArrayType.BP_WORKING_MEM); if (labels2d.size(1) != preOut.size(1)) { throw new DL4JInvalidInputException( "Labels array numColumns (size(1) = " + labels2d.size(1) + ") does not match output layer" + " number of outputs (nOut = " + preOut.size(1) + ") " + layerId()); } INDArray delta = lossFunction.computeGradient(labels2d, preOut, layerConf().getActivationFn(), maskArray); Gradient gradient = new DefaultGradient(); INDArray weightGradView = gradientViews.get(CenterLossParamInitializer.WEIGHT_KEY); INDArray biasGradView = gradientViews.get(CenterLossParamInitializer.BIAS_KEY); INDArray centersGradView = gradientViews.get(CenterLossParamInitializer.CENTER_KEY); // centers delta double alpha = layerConf().getAlpha(); INDArray centers = params.get(CenterLossParamInitializer.CENTER_KEY); INDArray l = labels.castTo(centers.dataType()); //Ensure correct dtype (same as params); no-op if already correct dtype INDArray centersForExamples = l.mmul(centers); INDArray diff = centersForExamples.sub(input).muli(alpha); INDArray numerator = l.transpose().mmul(diff); INDArray denominator = l.sum(0).reshape(l.size(1), 1).addi(1.0); INDArray deltaC; if (layerConf().getGradientCheck()) { double lambda = layerConf().getLambda(); //For gradient checks: need to multiply dLc/dcj by lambda to get dL/dcj deltaC = numerator.muli(lambda); } else { deltaC = numerator.diviColumnVector(denominator); } centersGradView.assign(deltaC); // other standard calculations Nd4j.gemm(input, delta, weightGradView, true, false, 1.0, 0.0); //Equivalent to: weightGradView.assign(input.transpose().mmul(delta)); delta.sum(biasGradView, 0); //biasGradView is initialized/zeroed first in sum op gradient.gradientForVariable().put(CenterLossParamInitializer.WEIGHT_KEY, weightGradView); gradient.gradientForVariable().put(CenterLossParamInitializer.BIAS_KEY, biasGradView); gradient.gradientForVariable().put(CenterLossParamInitializer.CENTER_KEY, centersGradView); return new Pair<>(gradient, delta); }
Example 14
Source File: NewInstanceTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testNewInstances() { boolean print = true; Nd4j.getRandom().setSeed(12345); Evaluation evaluation = new Evaluation(); EvaluationBinary evaluationBinary = new EvaluationBinary(); ROC roc = new ROC(2); ROCBinary roc2 = new ROCBinary(2); ROCMultiClass roc3 = new ROCMultiClass(2); RegressionEvaluation regressionEvaluation = new RegressionEvaluation(); EvaluationCalibration ec = new EvaluationCalibration(); IEvaluation[] arr = new IEvaluation[] {evaluation, evaluationBinary, roc, roc2, roc3, regressionEvaluation, ec}; INDArray evalLabel1 = Nd4j.create(10, 3); for (int i = 0; i < 10; i++) { evalLabel1.putScalar(i, i % 3, 1.0); } INDArray evalProb1 = Nd4j.rand(10, 3); evalProb1.diviColumnVector(evalProb1.sum(1)); evaluation.eval(evalLabel1, evalProb1); roc3.eval(evalLabel1, evalProb1); ec.eval(evalLabel1, evalProb1); INDArray evalLabel2 = Nd4j.getExecutioner().exec(new BernoulliDistribution(Nd4j.createUninitialized(10, 3), 0.5)); INDArray evalProb2 = Nd4j.rand(10, 3); evaluationBinary.eval(evalLabel2, evalProb2); roc2.eval(evalLabel2, evalProb2); INDArray evalLabel3 = Nd4j.getExecutioner().exec(new BernoulliDistribution(Nd4j.createUninitialized(10, 1), 0.5)); INDArray evalProb3 = Nd4j.rand(10, 1); roc.eval(evalLabel3, evalProb3); INDArray reg1 = Nd4j.rand(10, 3); INDArray reg2 = Nd4j.rand(10, 3); regressionEvaluation.eval(reg1, reg2); Evaluation evaluation2 = evaluation.newInstance(); EvaluationBinary evaluationBinary2 = evaluationBinary.newInstance(); ROC roc_2 = roc.newInstance(); ROCBinary roc22 = roc2.newInstance(); ROCMultiClass roc32 = roc3.newInstance(); RegressionEvaluation regressionEvaluation2 = regressionEvaluation.newInstance(); EvaluationCalibration ec2 = ec.newInstance(); IEvaluation[] arr2 = new IEvaluation[] {evaluation2, evaluationBinary2, roc_2, roc22, roc32, regressionEvaluation2, ec2}; evaluation2.eval(evalLabel1, evalProb1); roc32.eval(evalLabel1, evalProb1); ec2.eval(evalLabel1, evalProb1); evaluationBinary2.eval(evalLabel2, evalProb2); roc22.eval(evalLabel2, evalProb2); roc_2.eval(evalLabel3, evalProb3); regressionEvaluation2.eval(reg1, reg2); for (int i = 0 ; i < arr.length ; i++) { IEvaluation e = arr[i]; IEvaluation e2 = arr2[i]; assertEquals("Json not equal ", e.toJson(), e2.toJson()); assertEquals("Stats not equal ", e.stats(), e2.stats()); } }
Example 15
Source File: EvalJsonTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testJsonYamlCurves() { ROC roc = new ROC(0); INDArray evalLabel = Nd4j.getExecutioner().exec(new BernoulliDistribution(Nd4j.createUninitialized(100, 1), 0.5)); INDArray evalProb = Nd4j.rand(100, 1); roc.eval(evalLabel, evalProb); RocCurve c = roc.getRocCurve(); PrecisionRecallCurve prc = roc.getPrecisionRecallCurve(); String json1 = c.toJson(); String json2 = prc.toJson(); RocCurve c2 = RocCurve.fromJson(json1); PrecisionRecallCurve prc2 = PrecisionRecallCurve.fromJson(json2); assertEquals(c, c2); assertEquals(prc, prc2); // System.out.println(json1); //Also test: histograms EvaluationCalibration ec = new EvaluationCalibration(); evalLabel = Nd4j.create(10, 3); for (int i = 0; i < 10; i++) { evalLabel.putScalar(i, i % 3, 1.0); } evalProb = Nd4j.rand(10, 3); evalProb.diviColumnVector(evalProb.sum(1)); ec.eval(evalLabel, evalProb); Histogram[] histograms = new Histogram[] {ec.getResidualPlotAllClasses(), ec.getResidualPlot(0), ec.getResidualPlot(1), ec.getProbabilityHistogramAllClasses(), ec.getProbabilityHistogram(0), ec.getProbabilityHistogram(1)}; for (Histogram h : histograms) { String json = h.toJson(); String yaml = h.toYaml(); Histogram h2 = Histogram.fromJson(json); Histogram h3 = Histogram.fromYaml(yaml); assertEquals(h, h2); assertEquals(h2, h3); } }
Example 16
Source File: EvalJsonTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testSerde() { boolean print = false; Nd4j.getRandom().setSeed(12345); Evaluation evaluation = new Evaluation(); EvaluationBinary evaluationBinary = new EvaluationBinary(); ROC roc = new ROC(2); ROCBinary roc2 = new ROCBinary(2); ROCMultiClass roc3 = new ROCMultiClass(2); RegressionEvaluation regressionEvaluation = new RegressionEvaluation(); EvaluationCalibration ec = new EvaluationCalibration(); IEvaluation[] arr = new IEvaluation[] {evaluation, evaluationBinary, roc, roc2, roc3, regressionEvaluation, ec}; INDArray evalLabel = Nd4j.create(10, 3); for (int i = 0; i < 10; i++) { evalLabel.putScalar(i, i % 3, 1.0); } INDArray evalProb = Nd4j.rand(10, 3); evalProb.diviColumnVector(evalProb.sum(1)); evaluation.eval(evalLabel, evalProb); roc3.eval(evalLabel, evalProb); ec.eval(evalLabel, evalProb); evalLabel = Nd4j.getExecutioner().exec(new BernoulliDistribution(Nd4j.createUninitialized(10, 3), 0.5)); evalProb = Nd4j.rand(10, 3); evaluationBinary.eval(evalLabel, evalProb); roc2.eval(evalLabel, evalProb); evalLabel = Nd4j.getExecutioner().exec(new BernoulliDistribution(Nd4j.createUninitialized(10, 1), 0.5)); evalProb = Nd4j.rand(10, 1); roc.eval(evalLabel, evalProb); regressionEvaluation.eval(Nd4j.rand(10, 3), Nd4j.rand(10, 3)); for (IEvaluation e : arr) { String json = e.toJson(); if (print) { System.out.println(e.getClass() + "\n" + json + "\n\n"); } IEvaluation fromJson = BaseEvaluation.fromJson(json, BaseEvaluation.class); assertEquals(e.toJson(), fromJson.toJson()); } }
Example 17
Source File: EvalJsonTest.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Test public void testSerde() { boolean print = false; Nd4j.getRandom().setSeed(12345); Evaluation evaluation = new Evaluation(); EvaluationBinary evaluationBinary = new EvaluationBinary(); ROC roc = new ROC(2); ROCBinary roc2 = new ROCBinary(2); ROCMultiClass roc3 = new ROCMultiClass(2); RegressionEvaluation regressionEvaluation = new RegressionEvaluation(); EvaluationCalibration ec = new EvaluationCalibration(); org.nd4j.evaluation.IEvaluation[] arr = new org.nd4j.evaluation.IEvaluation[] {evaluation, evaluationBinary, roc, roc2, roc3, regressionEvaluation, ec}; INDArray evalLabel = Nd4j.create(10, 3); for (int i = 0; i < 10; i++) { evalLabel.putScalar(i, i % 3, 1.0); } INDArray evalProb = Nd4j.rand(10, 3); evalProb.diviColumnVector(evalProb.sum(true,1)); evaluation.eval(evalLabel, evalProb); roc3.eval(evalLabel, evalProb); ec.eval(evalLabel, evalProb); evalLabel = Nd4j.getExecutioner().exec(new BernoulliDistribution(Nd4j.createUninitialized(10, 3), 0.5)); evalProb = Nd4j.rand(10, 3); evaluationBinary.eval(evalLabel, evalProb); roc2.eval(evalLabel, evalProb); evalLabel = Nd4j.getExecutioner().exec(new BernoulliDistribution(Nd4j.createUninitialized(10, 1), 0.5)); evalProb = Nd4j.rand(10, 1); roc.eval(evalLabel, evalProb); regressionEvaluation.eval(Nd4j.rand(10, 3), Nd4j.rand(10, 3)); for (org.nd4j.evaluation.IEvaluation e : arr) { String json = e.toJson(); if (print) { System.out.println(e.getClass() + "\n" + json + "\n\n"); } IEvaluation fromJson = (IEvaluation) BaseEvaluation.fromJson(json, org.nd4j.evaluation.BaseEvaluation.class); assertEquals(e.toJson(), fromJson.toJson()); } }
Example 18
Source File: MaskedReductionUtil.java From deeplearning4j with Apache License 2.0 | 4 votes |
public static INDArray maskedPoolingConvolution(PoolingType poolingType, INDArray toReduce, INDArray mask, int pnorm, DataType dataType) { if(mask.rank() != 4){ //TODO BETTER ERROR MESSAGE EXPLAINING FORMAT //TODO ALSO HANDLE LEGACY FORMAT WITH WARNING WHERE POSSIBLE throw new IllegalStateException("Expected rank 4 mask array: Got array with shape " + Arrays.toString(mask.shape())); } mask = mask.castTo(dataType); //no-op if already correct dtype // [minibatch, channels, h, w] data with a mask array of shape [minibatch, 1, X, Y] // where X=(1 or inH) and Y=(1 or inW) //General case: must be equal or 1 on each dimension int[] dimensions = new int[4]; int count = 0; for(int i=0; i<4; i++ ){ if(toReduce.size(i) == mask.size(i)){ dimensions[count++] = i; } } if(count < 4){ dimensions = Arrays.copyOfRange(dimensions, 0, count); } switch (poolingType) { case MAX: //TODO This is ugly - replace it with something better... Need something like a Broadcast CAS op INDArray negInfMask; if(mask.dataType() == DataType.BOOL){ negInfMask = Transforms.not(mask).castTo(dataType); } else { negInfMask = mask.rsub(1.0); } BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0)); INDArray withInf = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastAddOp(toReduce, negInfMask, withInf, dimensions)); //At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op return withInf.max(2, 3); case AVG: case SUM: INDArray masked = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked, dimensions)); INDArray summed = masked.sum(2, 3); if (poolingType == PoolingType.SUM) { return summed; } INDArray maskCounts = mask.sum(1,2,3); summed.diviColumnVector(maskCounts); return summed; case PNORM: //Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0 INDArray masked2 = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked2, dimensions)); INDArray abs = Transforms.abs(masked2, true); Transforms.pow(abs, pnorm, false); INDArray pNorm = abs.sum(2, 3); return Transforms.pow(pNorm, 1.0 / pnorm); default: throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType); } }
Example 19
Source File: MaskedReductionUtil.java From deeplearning4j with Apache License 2.0 | 4 votes |
public static INDArray maskedPoolingTimeSeries(PoolingType poolingType, INDArray toReduce, INDArray mask, int pnorm, DataType dataType) { if (toReduce.rank() != 3) { throw new IllegalArgumentException("Expect rank 3 array: got " + toReduce.rank()); } if (mask.rank() != 2) { throw new IllegalArgumentException("Expect rank 2 array for mask: got " + mask.rank()); } toReduce = toReduce.castTo(dataType); mask = mask.castTo(dataType); //Sum pooling: easy. Multiply by mask, then sum as normal //Average pooling: as above, but do a broadcast element-wise divi by mask.sum(1) //Max pooling: set to -inf if mask is 0, then do max as normal switch (poolingType) { case MAX: INDArray negInfMask = mask.castTo(dataType).rsub(1.0); BooleanIndexing.replaceWhere(negInfMask, Double.NEGATIVE_INFINITY, Conditions.equals(1.0)); INDArray withInf = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastAddOp(toReduce, negInfMask, withInf, 0, 2)); //At this point: all the masked out steps have value -inf, hence can't be the output of the MAX op return withInf.max(2); case AVG: case SUM: INDArray masked = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked, 0, 2)); INDArray summed = masked.sum(2); if (poolingType == PoolingType.SUM) { return summed; } INDArray maskCounts = mask.sum(1); summed.diviColumnVector(maskCounts); return summed; case PNORM: //Similar to average and sum pooling: there's no N term here, so we can just set the masked values to 0 INDArray masked2 = Nd4j.createUninitialized(dataType, toReduce.shape()); Nd4j.getExecutioner().exec(new BroadcastMulOp(toReduce, mask, masked2, 0, 2)); INDArray abs = Transforms.abs(masked2, true); Transforms.pow(abs, pnorm, false); INDArray pNorm = abs.sum(2); return Transforms.pow(pNorm, 1.0 / pnorm); default: throw new UnsupportedOperationException("Unknown or not supported pooling type: " + poolingType); } }
Example 20
Source File: SporadicTests.java From nd4j with Apache License 2.0 | 2 votes |
@Test public void testDebugEdgeCase2(){ DataTypeUtil.setDTypeForContext(DataBuffer.Type.DOUBLE); INDArray l1 = Nd4j.create(new double[]{-0.2585039112684677,-0.005179485353710878,0.4348343401770497,0.020356532375728764,-0.1970793298488186}); INDArray l2 = Nd4j.create(2,l1.size(1)); INDArray p1 = Nd4j.create(new double[]{1.3979850406519119,0.6169451410155852,1.128993957530918,0.21000426084450596,0.3171215178932696}); INDArray p2 = Nd4j.create(2, p1.size(1)); for( int i=0; i<2; i++ ){ l2.putRow(i, l1); p2.putRow(i, p1); } INDArray norm2_1 = l1.norm2(1); System.out.println("Queue: " + ((CudaGridExecutioner) Nd4j.getExecutioner()).getQueueLength()); INDArray temp1 = p1.mul(l1); System.out.println("Queue: " + ((CudaGridExecutioner) Nd4j.getExecutioner()).getQueueLength()); // if (Nd4j.getExecutioner() instanceof CudaGridExecutioner) // ((CudaGridExecutioner) Nd4j.getExecutioner()).flushQueueBlocking(); INDArray out1 = temp1.diviColumnVector(norm2_1); System.out.println("------"); Nd4j.getExecutioner().commit(); INDArray norm2_2 = l2.norm2(1); System.out.println("norm2_1: " + Arrays.toString(norm2_1.data().asDouble())); System.out.println("norm2_2: " + Arrays.toString(norm2_2.data().asDouble())); INDArray temp2 = p2.mul(l2); System.out.println("temp1: " + Arrays.toString(temp1.data().asDouble())); System.out.println("temp2: " + Arrays.toString(temp2.data().asDouble())); INDArray out2 = temp2.diviColumnVector(norm2_2); //Outputs here should be identical: System.out.println(Arrays.toString(out1.data().asDouble())); System.out.println(Arrays.toString(out2.getRow(0).dup().data().asDouble())); }