Java Code Examples for org.nd4j.linalg.api.ndarray.INDArray#equalShapes()
The following examples show how to use
org.nd4j.linalg.api.ndarray.INDArray#equalShapes() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: KerasModelEndToEndTest.java From deeplearning4j with Apache License 2.0 | 6 votes |
private static void compareINDArrays(String label, INDArray expected, INDArray actual, double eps) { if(!expected.equalShapes(actual)){ throw new IllegalStateException("Shapes do not match for \"" + label + "\": got " + Arrays.toString(expected.shape()) + " vs " + Arrays.toString(actual.shape())); } INDArray diff = expected.sub(actual.castTo(expected.dataType())); double min = diff.minNumber().doubleValue(); double max = diff.maxNumber().doubleValue(); log.info(label + ": " + expected.equalsWithEps(actual, eps) + ", " + min + ", " + max); double threshold = 1e-7; double aAbsMax = Math.max(Math.abs(expected.minNumber().doubleValue()), Math.abs(expected.maxNumber().doubleValue())); double bAbsMax = Math.max(Math.abs(actual.minNumber().doubleValue()), Math.abs(actual.maxNumber().doubleValue())); // skip too small absolute inputs if (Math.abs(aAbsMax) > threshold && Math.abs(bAbsMax) > threshold) { boolean eq = expected.equalsWithEps(actual.castTo(expected.dataType()), eps); if(!eq){ System.out.println("Expected: " + Arrays.toString(expected.shape()) + ", actual: " + Arrays.toString(actual.shape())); System.out.println("Expected:\n" + expected); System.out.println("Actual: \n" + actual); } assertTrue("Output differs: " + label, eq); } }
Example 2
Source File: LossMSLE.java From deeplearning4j with Apache License 2.0 | 6 votes |
public INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray scoreArr; INDArray output = activationFn.getActivation(preOutput.dup(), true); scoreArr = Transforms.log(output.addi(1.0).divi(labels.add(1.0)), false); scoreArr = scoreArr.muli(scoreArr).divi(labels.size(1)); //Weighted loss function if (weights != null) { if (weights.length() != output.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + output.size(1)); } scoreArr.muliRowVector(weights.castTo(scoreArr.dataType())); } if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; }
Example 3
Source File: LossMAPE.java From deeplearning4j with Apache License 2.0 | 6 votes |
public INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray scoreArr; INDArray output = activationFn.getActivation(preOutput.dup(), true); scoreArr = output.rsubi(labels).divi(labels); Transforms.abs(scoreArr, false); scoreArr.muli(100.0 / labels.size(1)); //Weighted loss function if (weights != null) { if (weights.length() != output.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + output.size(1)); } scoreArr.muliRowVector(weights.castTo(scoreArr.dataType())); } if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; }
Example 4
Source File: LossPoisson.java From deeplearning4j with Apache License 2.0 | 6 votes |
public INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype /* mean of (yhat - y * log(yhat)) */ INDArray postOutput = activationFn.getActivation(preOutput.dup(), true); INDArray scoreArr = Transforms.log(postOutput); scoreArr.muli(labels); scoreArr = postOutput.sub(scoreArr); if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; }
Example 5
Source File: LossL2.java From deeplearning4j with Apache License 2.0 | 6 votes |
protected INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray scoreArr = output.rsubi(labels); scoreArr = scoreArr.muli(scoreArr); //Weighted loss function if (weights != null) { if (weights.length() != output.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + output.size(1)); } scoreArr.muliRowVector(weights.castTo(scoreArr.dataType())); } //Loss function with masking if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; }
Example 6
Source File: LossKLD.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray dLda = labels.div(output).negi(); if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) { //For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later //but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j) //We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be // error prone - though buy us a tiny bit of performance LossUtil.applyMask(dLda, mask); } INDArray grad = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation functions with params if (mask != null) { LossUtil.applyMask(grad, mask); } return grad; }
Example 7
Source File: LossSquaredHinge.java From deeplearning4j with Apache License 2.0 | 6 votes |
public INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype /* y_hat is -1 or 1 hinge loss is max(0,1-y_hat*y) */ INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray scoreArr = output.muli(labels); //y*yhat scoreArr.rsubi(1.0); //1 - y*yhat if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; // 1 - y*yhat }
Example 8
Source File: LossWasserstein.java From deeplearning4j with Apache License 2.0 | 6 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray dLda = labels.div(labels.size(1)); if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) { LossUtil.applyMask(labels, mask); } INDArray grad = activationFn.backprop(preOutput, dLda).getFirst(); if (mask != null) { LossUtil.applyMask(grad, mask); } return grad; }
Example 9
Source File: LossHinge.java From deeplearning4j with Apache License 2.0 | 6 votes |
public INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype /* y_hat is -1 or 1 hinge loss is max(0,1-y_hat*y) */ INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray scoreArr = output.muli(labels); //y*yhat scoreArr.rsubi(1.0); //1 - y*yhat if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; // 1 - y*yhat }
Example 10
Source File: LossL2.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray dLda = output.subi(labels).muli(2); if (weights != null) { dLda.muliRowVector(weights.castTo(dLda.dataType())); } if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) { //For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later //but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j) //We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be // error prone - but buy us a tiny bit of performance LossUtil.applyMask(dLda, mask); } INDArray gradients = activationFn.backprop(preOutput, dLda).getFirst(); //TODO handle activation function parameter gradients //Loss function with masking if (mask != null) { LossUtil.applyMask(gradients, mask); } return gradients; }
Example 11
Source File: LossL1.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray outSubLabels = output.sub(labels); INDArray dLda = Nd4j.getExecutioner().exec(new Sign(outSubLabels)); if (weights != null) { dLda.muliRowVector(weights.castTo(dLda.dataType())); } if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) { //For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later //but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j) //We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be // error prone - but buy us a tiny bit of performance LossUtil.applyMask(dLda, mask); } //dL/dz INDArray gradients = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation function param gradients if (mask != null) { LossUtil.applyMask(gradients, mask); } return gradients; }
Example 12
Source File: LossMSLE.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray p1 = output.add(1.0); INDArray dlda = p1.rdiv(2.0 / labels.size(1)); INDArray logRatio = Transforms.log(p1.divi(labels.add(1.0)), false); dlda.muli(logRatio); if (weights != null) { dlda.muliRowVector(weights.castTo(dlda.dataType())); } if (mask != null && LossUtil.isPerOutputMasking(dlda, mask)) { //For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later //but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j) //We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be // error prone - though buy us a tiny bit of performance LossUtil.applyMask(dlda, mask); } //dL/dz INDArray gradients = activationFn.backprop(preOutput, dlda).getFirst(); //TODO activation functions with weights if (mask != null) { LossUtil.applyMask(gradients, mask); } return gradients; }
Example 13
Source File: LossHinge.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype /* gradient is 0 if yhaty is >= 1 else gradient is gradient of the loss function = (1-yhaty) wrt preOutput = -y*derivative_of_yhat wrt preout */ INDArray bitMaskRowCol = scoreArray(labels, preOutput, activationFn, mask); /* bit mask is 0 if 1-sigma(y*yhat) is neg bit mask is 1 if 1-sigma(y*yhat) is +ve */ BooleanIndexing.replaceWhere(bitMaskRowCol, 0.0, Conditions.lessThan(0.0)); BooleanIndexing.replaceWhere(bitMaskRowCol, 1.0, Conditions.greaterThan(0.0)); INDArray dLda = labels.neg().muli(bitMaskRowCol); if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) { //For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later //but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j) //We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be // error prone - though buy us a tiny bit of performance LossUtil.applyMask(dLda, mask); } INDArray gradients = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation functions with parameters if (mask != null) { LossUtil.applyMask(gradients, mask); } return gradients; }
Example 14
Source File: LossWasserstein.java From deeplearning4j with Apache License 2.0 | 5 votes |
private INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask){ if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray scoreArr = labels.mul(output); if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; }
Example 15
Source File: LossSquaredHinge.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray scoreArr = scoreArray(labels, preOutput, activationFn, mask); INDArray bitMaskRowCol = scoreArr.dup(); /* bit mask is 0 if 1-sigma(y*yhat) is neg, bit mask is 1 if 1-sigma(y*yhat) is +ve */ BooleanIndexing.replaceWhere(bitMaskRowCol, 0.0, Conditions.lessThan(0.0)); BooleanIndexing.replaceWhere(bitMaskRowCol, 1.0, Conditions.greaterThan(0.0)); INDArray dLda = scoreArr.muli(2).muli(labels.neg()); dLda.muli(bitMaskRowCol); if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) { //For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later //but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j) //We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be // error prone - though buy us a tiny bit of performance LossUtil.applyMask(dLda, mask); } INDArray gradients = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation functions with params if (mask != null) { LossUtil.applyMask(gradients, mask); } return gradients; }
Example 16
Source File: LossMCXENT.java From deeplearning4j with Apache License 2.0 | 5 votes |
protected INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); if(activationFn instanceof ActivationSoftmax && softmaxClipEps > 0.0){ BooleanIndexing.replaceWhere(output, softmaxClipEps, Conditions.lessThan(softmaxClipEps)); BooleanIndexing.replaceWhere(output, 1.0-softmaxClipEps, Conditions.greaterThan(1.0-softmaxClipEps)); } INDArray scoreArr = Transforms.log(output, false).muli(labels); //Weighted loss function if (weights != null) { if (weights.length() != scoreArr.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + preOutput.size(1)); } scoreArr.muliRowVector(weights.castTo(scoreArr.dataType())); } if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; }
Example 17
Source File: LossMAPE.java From deeplearning4j with Apache License 2.0 | 5 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); INDArray actSubPredicted = labels.sub(output); INDArray dLda = Nd4j.getExecutioner().exec(new Sign(actSubPredicted)); INDArray absLabels = Nd4j.getExecutioner().exec(new Abs(labels.dup())); dLda.divi(absLabels).muli(-100.0 / labels.size(1)); //Weighted loss function if (weights != null) { dLda.muliRowVector(weights.castTo(dLda.dataType())); } if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) { //For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later //but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j) //We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be // error prone - but buy us a tiny bit of performance LossUtil.applyMask(dLda, mask); } INDArray gradient = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation functions with params if (mask != null) { LossUtil.applyMask(gradient, mask); } return gradient; }
Example 18
Source File: LossCosineProximity.java From deeplearning4j with Apache License 2.0 | 5 votes |
/** * * @param labels * @param preOutput * @param activationFn * @param mask * @return */ public INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype /* mean of -(y.dot(yhat)/||y||*||yhat||) */ INDArray postOutput = activationFn.getActivation(preOutput.dup(), true); INDArray yhatmag = postOutput.norm2(1); INDArray ymag = labels.norm2(1); yhatmag = Transforms.max(yhatmag, Nd4j.EPS_THRESHOLD, false); ymag = Transforms.max(ymag, Nd4j.EPS_THRESHOLD, false); INDArray scoreArr = postOutput.mul(labels); scoreArr.diviColumnVector(yhatmag); scoreArr.diviColumnVector(ymag); if (mask != null) { if (!mask.isColumnVector()) { //Per-output masking doesn't really make sense for cosine proximity throw new UnsupportedOperationException("Expected column vector mask array for LossCosineProximity." + " Got mask array with shape " + Arrays.toString(mask.shape()) + "; per-output masking is not " + "supported for LossCosineProximity"); } scoreArr.muliColumnVector(mask); } return scoreArr.muli(-1); }
Example 19
Source File: LossBinaryXENT.java From deeplearning4j with Apache License 2.0 | 4 votes |
private INDArray scoreArray(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray scoreArr; if (activationFn instanceof ActivationSoftmax) { //TODO Post GPU support for custom ops: Use LogSoftMax op to avoid numerical issues when calculating score INDArray logsoftmax = Nd4j.exec((CustomOp) new SoftMax(preOutput, preOutput.ulike(), -1))[0]; Transforms.log(logsoftmax, false); scoreArr = logsoftmax.muli(labels); } else { INDArray output = activationFn.getActivation(preOutput.dup(), true); if (clipEps > 0.0) { CustomOp op = DynamicCustomOp.builder("clipbyvalue") .addInputs(output) .callInplace(true) .addFloatingPointArguments(clipEps, 1.0-clipEps) .build(); Nd4j.getExecutioner().execAndReturn(op); } scoreArr = Transforms.log(output, true).muli(labels); INDArray secondTerm = output.rsubi(1); Transforms.log(secondTerm, false); secondTerm.muli(labels.rsub(1)); scoreArr.addi(secondTerm); } //Weighted loss function if (weights != null) { if (weights.length() != preOutput.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + preOutput.size(1)); } scoreArr.muliRowVector(weights.castTo(scoreArr.dataType())); } if (mask != null) { LossUtil.applyMask(scoreArr, mask); } return scoreArr; }
Example 20
Source File: LossBinaryXENT.java From deeplearning4j with Apache License 2.0 | 4 votes |
@Override public INDArray computeGradient(INDArray labels, INDArray preOutput, IActivation activationFn, INDArray mask) { if(!labels.equalShapes(preOutput)){ Preconditions.throwEx("Labels and preOutput must have equal shapes: got shapes %s vs %s", labels.shape(), preOutput.shape()); } labels = labels.castTo(preOutput.dataType()); //No-op if already correct dtype INDArray output = activationFn.getActivation(preOutput.dup(), true); if (clipEps > 0.0) { CustomOp op = DynamicCustomOp.builder("clipbyvalue") .addInputs(output) .callInplace(true) .addFloatingPointArguments(clipEps, 1.0-clipEps) .build(); Nd4j.getExecutioner().execAndReturn(op); } INDArray numerator = output.sub(labels); INDArray denominator = Nd4j.getExecutioner().exec(new TimesOneMinus(output)); // output * (1-output) INDArray dLda = numerator.divi(denominator); if (mask != null && LossUtil.isPerOutputMasking(dLda, mask)) { //For *most* activation functions: we don't actually need to mask dL/da in addition to masking dL/dz later //but: some, like softmax, require both (due to dL/dz_i being a function of dL/da_j, for i != j) //We could add a special case for softmax (activationFn instanceof ActivationSoftmax) but that would be // error prone - but buy us a tiny bit of performance LossUtil.applyMask(dLda, mask); } INDArray grad = activationFn.backprop(preOutput, dLda).getFirst(); //TODO activation functions with weights //Weighted loss function if (weights != null) { if (weights.length() != output.size(1)) { throw new IllegalStateException("Weights vector (length " + weights.length() + ") does not match output.size(1)=" + output.size(1)); } grad.muliRowVector(weights.castTo(grad.dataType())); } if (mask != null) { LossUtil.applyMask(grad, mask); } return grad; }