d3-array#Adder JavaScript Examples
The following examples show how to use
d3-array#Adder.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: area.js From cs-wiki with GNU General Public License v3.0 | 6 votes |
areaStream = {
point: noop,
lineStart: noop,
lineEnd: noop,
polygonStart: function() {
areaRingSum = new Adder();
areaStream.lineStart = areaRingStart;
areaStream.lineEnd = areaRingEnd;
},
polygonEnd: function() {
var areaRing = +areaRingSum;
areaSum.add(areaRing < 0 ? tau + areaRing : areaRing);
this.lineStart = this.lineEnd = this.point = noop;
},
sphere: function() {
areaSum.add(tau);
}
}
Example #2
Source File: bounds.js From cs-wiki with GNU General Public License v3.0 | 6 votes |
boundsStream = {
point: boundsPoint,
lineStart: boundsLineStart,
lineEnd: boundsLineEnd,
polygonStart: function() {
boundsStream.point = boundsRingPoint;
boundsStream.lineStart = boundsRingStart;
boundsStream.lineEnd = boundsRingEnd;
deltaSum = new Adder();
areaStream.polygonStart();
},
polygonEnd: function() {
areaStream.polygonEnd();
boundsStream.point = boundsPoint;
boundsStream.lineStart = boundsLineStart;
boundsStream.lineEnd = boundsLineEnd;
if (areaRingSum < 0) lambda0 = -(lambda1 = 180), phi0 = -(phi1 = 90);
else if (deltaSum > epsilon) phi1 = 90;
else if (deltaSum < -epsilon) phi0 = -90;
range[0] = lambda0, range[1] = lambda1;
},
sphere: function() {
lambda0 = -(lambda1 = 180), phi0 = -(phi1 = 90);
}
}
Example #3
Source File: centroid.js From cs-wiki with GNU General Public License v3.0 | 6 votes |
export default function(object) {
W0 = W1 =
X0 = Y0 = Z0 =
X1 = Y1 = Z1 = 0;
X2 = new Adder();
Y2 = new Adder();
Z2 = new Adder();
stream(object, centroidStream);
var x = +X2,
y = +Y2,
z = +Z2,
m = hypot(x, y, z);
// If the area-weighted ccentroid is undefined, fall back to length-weighted ccentroid.
if (m < epsilon2) {
x = X1, y = Y1, z = Z1;
// If the feature has zero length, fall back to arithmetic mean of point vectors.
if (W1 < epsilon) x = X0, y = Y0, z = Z0;
m = hypot(x, y, z);
// If the feature still has an undefined ccentroid, then return.
if (m < epsilon2) return [NaN, NaN];
}
return [atan2(y, x) * degrees, asin(z / m) * degrees];
}
Example #4
Source File: area.js From cs-wiki with GNU General Public License v3.0 | 6 votes |
areaStream = {
point: noop,
lineStart: noop,
lineEnd: noop,
polygonStart: function() {
areaStream.lineStart = areaRingStart;
areaStream.lineEnd = areaRingEnd;
},
polygonEnd: function() {
areaStream.lineStart = areaStream.lineEnd = areaStream.point = noop;
areaSum.add(abs(areaRingSum));
areaRingSum = new Adder();
},
result: function() {
var area = areaSum / 2;
areaSum = new Adder();
return area;
}
}
Example #5
Source File: measure.js From cs-wiki with GNU General Public License v3.0 | 6 votes |
lengthStream = {
point: noop,
lineStart: function() {
lengthStream.point = lengthPointFirst;
},
lineEnd: function() {
if (lengthRing) lengthPoint(x00, y00);
lengthStream.point = noop;
},
polygonStart: function() {
lengthRing = true;
},
polygonEnd: function() {
lengthRing = null;
},
result: function() {
var length = +lengthSum;
lengthSum = new Adder();
return length;
}
}
Example #6
Source File: area.js From cs-wiki with GNU General Public License v3.0 | 5 votes |
export default function(object) {
areaSum = new Adder();
stream(object, areaStream);
return areaSum * 2;
}
Example #7
Source File: area.js From cs-wiki with GNU General Public License v3.0 | 5 votes |
areaRingSum = new Adder()
Example #8
Source File: area.js From cs-wiki with GNU General Public License v3.0 | 5 votes |
areaSum = new Adder()
Example #9
Source File: length.js From cs-wiki with GNU General Public License v3.0 | 5 votes |
export default function(object) {
lengthSum = new Adder();
stream(object, lengthStream);
return +lengthSum;
}
Example #10
Source File: area.js From cs-wiki with GNU General Public License v3.0 | 5 votes |
areaSum = new Adder()
Example #11
Source File: area.js From cs-wiki with GNU General Public License v3.0 | 5 votes |
areaRingSum = new Adder()
Example #12
Source File: measure.js From cs-wiki with GNU General Public License v3.0 | 5 votes |
lengthSum = new Adder()
Example #13
Source File: polygonContains.js From cs-wiki with GNU General Public License v3.0 | 5 votes |
export default function(polygon, point) {
var lambda = longitude(point),
phi = point[1],
sinPhi = sin(phi),
normal = [sin(lambda), -cos(lambda), 0],
angle = 0,
winding = 0;
var sum = new Adder();
if (sinPhi === 1) phi = halfPi + epsilon;
else if (sinPhi === -1) phi = -halfPi - epsilon;
for (var i = 0, n = polygon.length; i < n; ++i) {
if (!(m = (ring = polygon[i]).length)) continue;
var ring,
m,
point0 = ring[m - 1],
lambda0 = longitude(point0),
phi0 = point0[1] / 2 + quarterPi,
sinPhi0 = sin(phi0),
cosPhi0 = cos(phi0);
for (var j = 0; j < m; ++j, lambda0 = lambda1, sinPhi0 = sinPhi1, cosPhi0 = cosPhi1, point0 = point1) {
var point1 = ring[j],
lambda1 = longitude(point1),
phi1 = point1[1] / 2 + quarterPi,
sinPhi1 = sin(phi1),
cosPhi1 = cos(phi1),
delta = lambda1 - lambda0,
sign = delta >= 0 ? 1 : -1,
absDelta = sign * delta,
antimeridian = absDelta > pi,
k = sinPhi0 * sinPhi1;
sum.add(atan2(k * sign * sin(absDelta), cosPhi0 * cosPhi1 + k * cos(absDelta)));
angle += antimeridian ? delta + sign * tau : delta;
// Are the longitudes either side of the point’s meridian (lambda),
// and are the latitudes smaller than the parallel (phi)?
if (antimeridian ^ lambda0 >= lambda ^ lambda1 >= lambda) {
var arc = cartesianCross(cartesian(point0), cartesian(point1));
cartesianNormalizeInPlace(arc);
var intersection = cartesianCross(normal, arc);
cartesianNormalizeInPlace(intersection);
var phiArc = (antimeridian ^ delta >= 0 ? -1 : 1) * asin(intersection[2]);
if (phi > phiArc || phi === phiArc && (arc[0] || arc[1])) {
winding += antimeridian ^ delta >= 0 ? 1 : -1;
}
}
}
}
// First, determine whether the South pole is inside or outside:
//
// It is inside if:
// * the polygon winds around it in a clockwise direction.
// * the polygon does not (cumulatively) wind around it, but has a negative
// (counter-clockwise) area.
//
// Second, count the (signed) number of times a segment crosses a lambda
// from the point to the South pole. If it is zero, then the point is the
// same side as the South pole.
return (angle < -epsilon || angle < epsilon && sum < -epsilon2) ^ (winding & 1);
}