three#DoubleSide JavaScript Examples

The following examples show how to use three#DoubleSide. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: floor.js    From architect3d with MIT License 6 votes vote down vote up
buildFloor()
	{
		var textureSettings = this.room.getTexture();
		// setup texture
//		var floorTexture = ImageUtils.loadTexture(textureSettings.url);
		var floorTexture = new TextureLoader().load(textureSettings.url);
		floorTexture.wrapS = RepeatWrapping;
		floorTexture.wrapT = RepeatWrapping;
		floorTexture.repeat.set(1, 1);
		var floorMaterialTop = new MeshPhongMaterial({
			map: floorTexture,
			side: DoubleSide,
			// ambient: 0xffffff, TODO_Ekki
			color: 0xcccccc,
			specular: 0x0a0a0a
		});

		var textureScale = textureSettings.scale;
		// http://stackoverflow.com/questions/19182298/how-to-texture-a-three-js-mesh-created-with-shapegeometry
		// scale down coords to fit 0 -> 1, then rescale

		var points = [];
		this.room.interiorCorners.forEach((corner) => {
			points.push(new Vector2(corner.x / textureScale,corner.y / textureScale));
		});
		var shape = new Shape(points);
		var geometry = new ShapeGeometry(shape);
		var floor = new Mesh(geometry, floorMaterialTop);

		floor.rotation.set(Math.PI / 2, 0, 0);
		floor.scale.set(textureScale, textureScale, textureScale);
		floor.receiveShadow = true;
		floor.castShadow = false;
		return floor;
	}
Example #2
Source File: utils.js    From cga.js with MIT License 6 votes vote down vote up
export function toMesh(obj, materialOption) {
    var renderObj = null;
    if (obj instanceof cga.Point || obj.isVec3) {
        var geometry = new BufferGeometry()
        geometry.setAttribute('position', new Float32BufferAttribute([obj.x, obj.y, obj.z], 3));
        var material = new PointsMaterial({ size: 5, sizeAttenuation: false, color: 0x0ff0f0, alphaTest: 0.9, transparent: true });
        renderObj = new Points(geometry, material);

    } else if (obj instanceof cga.Line) {
        var geometry = new Geometry()
        var v1 = obj.direction.clone().multiplyScalar(10000).add(obj.origin);
        var v2 = obj.direction.clone().multiplyScalar(-10000).add(obj.origin);
        geometry.vertices.push(v1, v2);
        var material = new LineBasicMaterial({ color: 0xffff8f });
        renderObj = new Line(geometry, material);

    } else if (obj instanceof cga.Ray) {
        var geometry = new Geometry()
        var v1 = obj.direction.clone().multiplyScalar(10000).add(obj.origin);
        geometry.vertices.push(obj.origin, v1);
        var material = new LineBasicMaterial({ color: 0xff8fff });
        renderObj = new Line(geometry, material);
    } else if (obj instanceof cga.Segment) {
        var geometry = new Geometry()
        geometry.vertices.push(obj.p0, obj.p1);
        var material = new LineBasicMaterial({ color: 0x8fffff });
        renderObj = new Line(geometry, material);
    } else if (obj instanceof cga.Triangle) {
        var geometry = new Geometry()
        geometry.vertices = [...obj];
        geometry.faces.push(new Face3(0, 1, 2))
        var material = new MeshBasicMaterial({ color: 0x8f8fff, side: DoubleSide });
        renderObj = new Mesh(geometry, material);
    }

    else if (obj instanceof cga.Polyline) {
        var geometry = new Geometry()
        geometry.vertices.push(...obj);
        var material = new LineBasicMaterial({ color: 0xff8fff });
        renderObj = new Line(geometry, material);
    } else if (obj instanceof cga.Polygon) {

    } else if (obj instanceof cga.Circle) {
        var geometry = new Geometry()
        var radius = obj.radius;
        for (let i = 0; i <= 128; i++) {
            var p = new Vector3();
            p.x = radius * Math.cos(Math.PI / 64 * i);
            p.y = radius * Math.sin(Math.PI / 64 * i);
            geometry.vertices.push(p);
        }
        var quaternion = getQuaternionForm2V(new Vector3(0, 0, 1), obj.normal);
        var mat4 = new Matrix4();
        mat4.makeRotationFromQuaternion(quaternion);
        geometry.applyMatrix(mat4);
        geometry.translate(obj.center.x, obj.center.y, obj.center.z);
        var material = new LineBasicMaterial({ color: 0x8fffff });
        renderObj = new Line(geometry, material);
        renderObj.add(new toMesh(obj.center))
        renderObj.add(new toMesh(new cga.Ray(obj.center, obj.normal)))
    }
    else if (obj instanceof cga.Disk) {
        var geometry = new CircleGeometry(obj.radius, 128)
        var material = new MeshBasicMaterial({ color: 0x8f8fff, side: DoubleSide });
        var quaternion = getQuaternionForm2V(new Vector3(0, 0, 1), obj.normal);
        var mat4 = new Matrix4();
        mat4.makeRotationFromQuaternion(quaternion);
        geometry.applyMatrix4(mat4);
        geometry.translate(obj.center.x, obj.center.y, obj.center.z);
        renderObj = new Mesh(geometry, material);
        renderObj.add(new toMesh(obj.center))
        renderObj.add(new toMesh(new cga.Ray(obj.center, obj.normal)))
    }

    return renderObj;

}
Example #3
Source File: FireBallFlare.js    From sketch-webcam with MIT License 6 votes vote down vote up
constructor() {
    const geometry = new IcosahedronBufferGeometry(2.2, 5);

    const material = new RawShaderMaterial({
      uniforms: {
        time: {
          value: 0
        },
        texture: {
          value: null
        },
        alphaShow: {
          value: 0
        },
        alphaHide: {
          value: 0
        }
      },
      vertexShader: vs,
      fragmentShader: fs,
      transparent: true,
      blending: AdditiveBlending,
      side: DoubleSide,
      depthWrite: false
    });

    super(geometry, material);
  }
Example #4
Source File: skybox.js    From architect3d with MIT License 6 votes vote down vote up
setEnvironmentMap(url)
	{
		var scope = this;
		scope.texture.load(url, function (t)
		{
			var textureUniform = {type: 't', value: t};
			var uniforms = {texture: textureUniform};
			scope.skyMat = new ShaderMaterial({vertexShader: scope.vertexShader, fragmentShader: scope.fragmentShader, uniforms: uniforms, side: DoubleSide});
			scope.toggleEnvironment(scope.useEnvironment);			
		}, undefined, function()
		{
			console.log('ERROR LOADEING FILE');
		});
	}
Example #5
Source File: ExtrudeMarker.js    From BlueMapWeb with MIT License 6 votes vote down vote up
/**
     * @param shape {Shape}
     */
    constructor(shape) {
        let geometry = ExtrudeMarkerFill.createGeometry(shape);
        let material = new ShaderMaterial({
            vertexShader: MARKER_FILL_VERTEX_SHADER,
            fragmentShader: MARKER_FILL_FRAGMENT_SHADER,
            side: DoubleSide,
            depthTest: true,
            transparent: true,
            uniforms: {
                markerColor: { value: new Color() },
                markerOpacity: { value: 0 },
                fadeDistanceMin: { value: 0 },
                fadeDistanceMax: { value: Number.MAX_VALUE },
            }
        });

        super(geometry, material);
    }
Example #6
Source File: edge.js    From architect3d with MIT License 6 votes vote down vote up
buildSideFillter(p1, p2, height, color)
	{
		var points = [this.toVec3(p1), this.toVec3(p2), this.toVec3(p2, height), this.toVec3(p1, height) ];

		var geometry = new Geometry();
		points.forEach((p) => {
			geometry.vertices.push(p);
		});
		geometry.faces.push(new Face3(0, 1, 2));
		geometry.faces.push(new Face3(0, 2, 3));

		var fillerMaterial = new MeshBasicMaterial({color: color,side: DoubleSide});
		var filler = new Mesh(geometry, fillerMaterial);
		return filler;
	}
Example #7
Source File: room.js    From architect3d with MIT License 6 votes vote down vote up
generatePlane()
	{
		var points = [];
		this.interiorCorners.forEach((corner) => {
			points.push(new Vector2(corner.x,corner.y));
		});
		var shape = new Shape(points);
		var geometry = new ShapeGeometry(shape);
		this.floorPlane = new Mesh(geometry, new MeshBasicMaterial({side: DoubleSide, visible:false}));
		//The below line was originally setting the plane visibility to false
		//Now its setting visibility to true. This is necessary to be detected
		//with the raycaster objects to click walls and floors.
		this.floorPlane.visible = true;
		this.floorPlane.rotation.set(Math.PI / 2, 0, 0);
		this.floorPlane.room = this; // js monkey patch

		var b3 = new Box3();
		b3.setFromObject(this.floorPlane);
		this.min = b3.min.clone();
		this.max = b3.max.clone();
		this.center = this.max.clone().sub(this.min).multiplyScalar(0.5).add(this.min);
	}
Example #8
Source File: room.js    From architect3d with MIT License 6 votes vote down vote up
generateRoofPlane()
	{
		if(this.roofPlane && this.roofPlane != null)
		{
			if(this.roofPlane.parent != null)
			{
					this.roofPlane.parent.remove(this.roofPlane);
			}
		}
		// setup texture
		var geometry = new Geometry();

		this.corners.forEach((corner) => {
			var vertex = new Vector3(corner.x,corner.elevation, corner.y);
			geometry.vertices.push(vertex);
		});
		for (var i=2;i<geometry.vertices.length;i++)
		{
			var face = new Face3(0, i-1, i);
			geometry.faces.push(face);
		}
		this.roofPlane = new Mesh(geometry, new MeshBasicMaterial({side: DoubleSide, visible:false}));
		this.roofPlane.room = this;
	}
Example #9
Source File: ShapeMarker.js    From BlueMapWeb with MIT License 6 votes vote down vote up
/**
     * @param shape {Shape}
     */
    constructor(shape) {
        let geometry = ShapeMarkerFill.createGeometry(shape);
        let material = new ShaderMaterial({
            vertexShader: MARKER_FILL_VERTEX_SHADER,
            fragmentShader: MARKER_FILL_FRAGMENT_SHADER,
            side: DoubleSide,
            depthTest: true,
            transparent: true,
            uniforms: {
                markerColor: { value: new Color() },
                markerOpacity: { value: 0 },
                fadeDistanceMin: { value: 0 },
                fadeDistanceMax: { value: Number.MAX_VALUE },
            }
        });

        super(geometry, material);
    }
Example #10
Source File: edge.js    From architect3d with MIT License 5 votes vote down vote up
updatePlanes()
	{
//		var extStartCorner = this.wall.getClosestCorner(this.edge.exteriorStart());
//		var extEndCorner = this.wall.getClosestCorner(this.edge.exteriorEnd());		
		
		var extStartCorner = this.edge.getStart();
		var extEndCorner = this.edge.getEnd();

		if(extStartCorner == null || extEndCorner == null)
		{
			return;			
		}

		var color = 0xFFFFFF;
		var wallMaterial = new MeshBasicMaterial({
			color: color,
			side: FrontSide,
			map: this.texture,
			transparent: true,
			lightMap: this.lightMap,
			opacity: 1.0,
			wireframe: false,
		});
		var fillerMaterial = new MeshBasicMaterial({
			color: this.fillerColor,
			side: DoubleSide,
			map: this.texture,
			transparent: true,
			opacity: 1.0,
			wireframe: false,
		});

		// exterior plane for real exterior walls
		//If the walls have corners that have more than one room attached
		//Then there is no need to construct an exterior wall
		if(this.edge.wall.start.getAttachedRooms().length < 2 || this.edge.wall.end.getAttachedRooms().length < 2)
		{
			this.planes.push(this.makeWall(this.edge.exteriorStart(), this.edge.exteriorEnd(), this.edge.exteriorTransform, this.edge.invExteriorTransform, fillerMaterial));
		}
		// interior plane
		this.planes.push(this.makeWall(this.edge.interiorStart(), this.edge.interiorEnd(), this.edge.interiorTransform, this.edge.invInteriorTransform, wallMaterial));
		// bottom
		// put into basePlanes since this is always visible
		this.basePlanes.push(this.buildFillerUniformHeight(this.edge, 0, BackSide, this.baseColor));
		if(this.edge.wall.start.getAttachedRooms().length < 2 || this.edge.wall.end.getAttachedRooms().length < 2)
		{
			this.planes.push(this.buildFillerVaryingHeights(this.edge, DoubleSide, this.fillerColor));
		}

		// sides
		this.planes.push(this.buildSideFillter(this.edge.interiorStart(), this.edge.exteriorStart(), extStartCorner.elevation, this.sideColor));
		this.planes.push(this.buildSideFillter(this.edge.interiorEnd(), this.edge.exteriorEnd(), extEndCorner.elevation, this.sideColor));
//		this.planes.push(this.buildSideFillter(this.edge.interiorStart(), this.edge.exteriorStart(), this.wall.startElevation, this.sideColor));
//		this.planes.push(this.buildSideFillter(this.edge.interiorEnd(), this.edge.exteriorEnd(), extEndCorner.endElevation, this.sideColor));
	}
Example #11
Source File: skybox.js    From architect3d with MIT License 5 votes vote down vote up
constructor(scene, renderer)
	{
		super();
		
		this.defaultEnvironment = 'rooms/textures/envs/Garden.png';
		this.useEnvironment = false;
		this.topColor = 0x92b2ce;//0xe9e9e9; //0xf9f9f9;//0x565e63
		this.bottomColor = 0xffffff;//0xD8ECF9
		this.verticalOffset = 400;
		this.exponent = 0.5;
		
		var uniforms = {topColor: {type: 'c',value: new Color(this.topColor)},bottomColor: {type: 'c',value: new Color(this.bottomColor)},offset: {type: 'f',value: this.verticalOffset}, exponent: {type:'f', value: this.exponent}};
		
		this.scene = scene;
		this.renderer = renderer;
		
		this.sphereRadius = 4000;
		this.widthSegments = 32;
		this.heightSegments = 15;
		this.sky = null;

		this.plainVertexShader = ['varying vec3 vWorldPosition;','void main() {','vec4 worldPosition = modelMatrix * vec4( position, 1.0 );','vWorldPosition = worldPosition.xyz;','gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0 );','}'].join('\n');
		this.plainFragmentShader = ['uniform vec3 bottomColor;','uniform vec3 topColor;','uniform float offset;','uniform float exponent;','varying vec3 vWorldPosition;','void main() {',' float h = normalize( vWorldPosition + offset ).y;',' gl_FragColor = vec4( mix( bottomColor, topColor, max( pow( max(h, 0.0 ), exponent ), 0.0 ) ), 1.0 );','}'].join('\n');
		
		this.vertexShader = ['varying vec2 vUV;','void main() {','  vUV=uv;','  vec4 pos = vec4(position, 1.0);', '   gl_Position = projectionMatrix * modelViewMatrix * pos;','}'].join('\n');
		this.fragmentShader = ['uniform sampler2D texture;', 'varying vec2 vUV;', 'void main() {  ', 'vec4 sample = texture2D(texture, vUV);', 'gl_FragColor = vec4(sample.xyz, sample.w);' ,'}'].join('\n');
		
		this.texture = new TextureLoader();
		this.plainSkyMat = new ShaderMaterial({vertexShader: this.plainVertexShader,fragmentShader: this.plainFragmentShader,uniforms: uniforms, side: DoubleSide});
		this.skyMat = undefined;
		
		this.skyGeo = new SphereGeometry(this.sphereRadius, this.widthSegments, this.heightSegments);
		this.sky = new Mesh(this.skyGeo, this.skyMat);
//		this.sky.position.x += this.sphereRadius*0.5;
		
		
		var groundT = new TextureLoader().load('rooms/textures/Ground_4K.jpg', function(){});		
		groundT.wrapS = groundT.wrapT = RepeatWrapping;
		groundT.repeat.set(10,10);
		
//		var uniforms2 = {topColor: {type: 'c',value: new Color(0xFFFFFF)},bottomColor: {type: 'c',value: new Color(0x999999)},offset: {type: 'f',value: this.verticalOffset}, exponent: {type:'f', value: this.exponent}};
		this.groundGeo = new PlaneGeometry(10000, 10000, 10);
		this.groundMat = new MeshBasicMaterial({color: 0xEAEAEA, side: DoubleSide, map:groundT });
		this.ground = new Mesh(this.groundGeo, this.groundMat);
		this.ground.rotateX(-Math.PI * 0.5);
		this.ground.position.y = -1;
		
		this.groundSceneReflector = new GroundSceneReflector(this.ground, this.renderer, this.scene,{textureOne:'rooms/textures/Ground_4K.jpg', textureTwo:'rooms/textures/GroundRough.jpg', wrapOne:{x:40, y:40}, wrapTwo:{x:50, y:50}, textureWidth: 512, textureHeight: 512, intensity: 0.1, blendIntensity: 0.05});
		
		this.scene.add(this.sky);
		this.scene.add(this.ground);
		
		var axesHelper = new AxesHelper( 100 );
		this.scene.add( axesHelper );
		
		this.init();
	}
Example #12
Source File: item.js    From architect3d with MIT License 4 votes vote down vote up
/**
	 * Constructs an item.
	 *
	 * @param model
	 *            TODO
	 * @param metadata
	 *            TODO
	 * @param geometry
	 *            TODO
	 * @param material
	 *            TODO
	 * @param position
	 *            TODO
	 * @param rotation
	 *            TODO
	 * @param scale
	 *            TODO
	 */
	constructor(model, metadata, geometry, material, position, rotation, scale, isgltf=false)
	{
		super();

		this.model = model;
		this.metadata = metadata;

		/** */
		this.errorGlow = new Mesh();
		/** */
		this.hover = false;
		/** */
		this.selected = false;
		/** */
		this.highlighted = false;
		/** */
		this.error = false;
		/** */
		this.emissiveColor = 0x444444;
		/** Does this object affect other floor items */
		this.obstructFloorMoves = true;
		/** */
		this.position_set = false;
		/** Show rotate option in context menu */
		this.allowRotate = true;
		/** */
		this.fixed = false;
		/** dragging */
		this.dragOffset = new Vector3();
		/** */
		this.halfSize = new Vector3(0,0,0);
		this.bhelper = null;

		this.scene = this.model.scene;
		this._freePosition = true;

		if(!isgltf)
		{
				this.geometry = geometry;
				this.material = material;
				// center in its boundingbox
				this.geometry.computeBoundingBox();
				this.geometry.applyMatrix(new Matrix4().makeTranslation(- 0.5 * (this.geometry.boundingBox.max.x + this.geometry.boundingBox.min.x),- 0.5 * (this.geometry.boundingBox.max.y + this.geometry.boundingBox.min.y),- 0.5 * (this.geometry.boundingBox.max.z + this.geometry.boundingBox.min.z)));
				this.geometry.computeBoundingBox();
		}
		else
		{
				var objectBox = new Box3();
				objectBox.setFromObject(geometry);
				var hsize = objectBox.max.clone().sub(objectBox.min).multiplyScalar(0.5);
				this.geometry = new BoxGeometry(hsize.x*0.5, hsize.y*0.5, hsize.z*0.5);
				this.material =  new MeshStandardMaterial({color: 0x000000, wireframe: true, visible:false});
				this.geometry.computeBoundingBox();
				this.add(geometry);
		}

		if(!this.material.color)
		{
			this.material.color = new Color('#FFFFFF');
		}
		this.wirematerial = new MeshBasicMaterial({color: 0x000000, wireframe: true});

		this.errorColor = 0xff0000;

		this.resizable = metadata.resizable;

		this.castShadow = true;
		this.receiveShadow = false;

		this.originalmaterial = material;
		this.texture = this.material.texture;

		this.position_set = false;
		if (position)
		{
			this.position.copy(position);
			this.position_set = true;
		}

		this.halfSize = this.objectHalfSize();
		this.canvasWH = document.createElement('canvas');
		this.canvasWH.width = this.getWidth()+1.0;
		this.canvasWH.height = this.getHeight()+1.0;

		this.canvascontextWH = this.canvasWH.getContext('2d');
		this.canvasTextureWH = new CanvasTexture(this.canvasWH);
		this.canvasMaterialWH = new MeshBasicMaterial({map:this.canvasTextureWH, side: DoubleSide, transparent:true});
		this.canvasPlaneWH = new Mesh(new PlaneGeometry(this.getWidth(), this.getHeight(), 1, 1), this.canvasMaterialWH);
		this.canvasPlaneWH.scale.set(1, 1, 1);
		this.canvasPlaneWH.position.set(0, 0, this.getDepth()*0.5 + 0.3);

		this.canvasWD = document.createElement('canvas');
		this.canvasWD.width = this.getWidth()+1.0;
		this.canvasWD.height = this.getDepth()+1.0;

		this.canvascontextWD = this.canvasWD.getContext('2d');
		this.canvasTextureWD = new CanvasTexture(this.canvasWD);
		this.canvasMaterialWD = new MeshBasicMaterial({map:this.canvasTextureWD, side: DoubleSide, transparent:true});
		this.canvasPlaneWD = new Mesh(new PlaneGeometry(this.getWidth(), this.getDepth(), 1, 1), this.canvasMaterialWD);
		this.canvasPlaneWD.rotateX(-Math.PI * 0.5);
		this.canvasPlaneWD.scale.set(1, 1, 1);
		this.canvasPlaneWD.position.set(0, this.getHeight()*0.5 + 0.3, 0);
		this.canvasPlaneWH.visible = this.canvasPlaneWD.visible = false;

    this.add(this.canvasPlaneWH);
		this.add(this.canvasPlaneWD);
		this.resizeProportionally = true;

		if (rotation)
		{
			this.rotation.y = rotation;
		}

		if (scale != null)
		{
			this.setScale(scale.x, scale.y, scale.z);
		}

		if(this.metadata.materialColors)
		{
			if(this.metadata.materialColors.length)
			{
				if(this.material.length)
				{
					for (var i=0;i<this.metadata.materialColors.length;i++)
					{
						this.material[i].color = new Color(this.metadata.materialColors[i]);
					}
				}
				else
				{
					this.material.color = new Color(this.metadata.materialColors[0]);
				}
			}
		}
	}
Example #13
Source File: TDSLoader.js    From canvas with Apache License 2.0 4 votes vote down vote up
TDSLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

	constructor: TDSLoader,

	/**
	 * Load 3ds file from url.
	 *
	 * @method load
	 * @param {[type]} url URL for the file.
	 * @param {Function} onLoad onLoad callback, receives group Object3D as argument.
	 * @param {Function} onProgress onProgress callback.
	 * @param {Function} onError onError callback.
	 */
	load: function ( url, onLoad, onProgress, onError ) {

		var scope = this;

		var path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path;

		var loader = new FileLoader( this.manager );
		loader.setPath( this.path );
		loader.setResponseType( 'arraybuffer' );

		loader.load( url, function ( data ) {

			try {

				onLoad( scope.parse( data, path ) );

			} catch ( e ) {

				if ( onError ) {

					onError( e );

				} else {

					console.error( e );

				}

				scope.manager.itemError( url );

			}

		}, onProgress, onError );

	},

	/**
	 * Parse arraybuffer data and load 3ds file.
	 *
	 * @method parse
	 * @param {ArrayBuffer} arraybuffer Arraybuffer data to be loaded.
	 * @param {String} path Path for external resources.
	 * @return {Group} Group loaded from 3ds file.
	 */
	parse: function ( arraybuffer, path ) {

		this.group = new Group();
		this.position = 0;
		this.materials = [];
		this.meshes = [];

		this.readFile( arraybuffer, path );

		for ( var i = 0; i < this.meshes.length; i ++ ) {

			this.group.add( this.meshes[ i ] );

		}

		return this.group;

	},

	/**
	 * Decode file content to read 3ds data.
	 *
	 * @method readFile
	 * @param {ArrayBuffer} arraybuffer Arraybuffer data to be loaded.
	 * @param {String} path Path for external resources.
	 */
	readFile: function ( arraybuffer, path ) {

		var data = new DataView( arraybuffer );
		var chunk = this.readChunk( data );

		if ( chunk.id === MLIBMAGIC || chunk.id === CMAGIC || chunk.id === M3DMAGIC ) {

			var next = this.nextChunk( data, chunk );

			while ( next !== 0 ) {

				if ( next === M3D_VERSION ) {

					var version = this.readDWord( data );
					this.debugMessage( '3DS file version: ' + version );

				} else if ( next === MDATA ) {

					this.resetPosition( data );
					this.readMeshData( data, path );

				} else {

					this.debugMessage( 'Unknown main chunk: ' + next.toString( 16 ) );

				}

				next = this.nextChunk( data, chunk );

			}

		}

		this.debugMessage( 'Parsed ' + this.meshes.length + ' meshes' );

	},

	/**
	 * Read mesh data chunk.
	 *
	 * @method readMeshData
	 * @param {Dataview} data Dataview in use.
	 * @param {String} path Path for external resources.
	 */
	readMeshData: function ( data, path ) {

		var chunk = this.readChunk( data );
		var next = this.nextChunk( data, chunk );

		while ( next !== 0 ) {

			if ( next === MESH_VERSION ) {

				var version = + this.readDWord( data );
				this.debugMessage( 'Mesh Version: ' + version );

			} else if ( next === MASTER_SCALE ) {

				var scale = this.readFloat( data );
				this.debugMessage( 'Master scale: ' + scale );
				this.group.scale.set( scale, scale, scale );

			} else if ( next === NAMED_OBJECT ) {

				this.debugMessage( 'Named Object' );
				this.resetPosition( data );
				this.readNamedObject( data );

			} else if ( next === MAT_ENTRY ) {

				this.debugMessage( 'Material' );
				this.resetPosition( data );
				this.readMaterialEntry( data, path );

			} else {

				this.debugMessage( 'Unknown MDATA chunk: ' + next.toString( 16 ) );

			}

			next = this.nextChunk( data, chunk );

		}

	},

	/**
	 * Read named object chunk.
	 *
	 * @method readNamedObject
	 * @param {Dataview} data Dataview in use.
	 */
	readNamedObject: function ( data ) {

		var chunk = this.readChunk( data );
		var name = this.readString( data, 64 );
		chunk.cur = this.position;

		var next = this.nextChunk( data, chunk );
		while ( next !== 0 ) {

			if ( next === N_TRI_OBJECT ) {

				this.resetPosition( data );
				var mesh = this.readMesh( data );
				mesh.name = name;
				this.meshes.push( mesh );

			} else {

				this.debugMessage( 'Unknown named object chunk: ' + next.toString( 16 ) );

			}

			next = this.nextChunk( data, chunk );

		}

		this.endChunk( chunk );

	},

	/**
	 * Read material data chunk and add it to the material list.
	 *
	 * @method readMaterialEntry
	 * @param {Dataview} data Dataview in use.
	 * @param {String} path Path for external resources.
	 */
	readMaterialEntry: function ( data, path ) {

		var chunk = this.readChunk( data );
		var next = this.nextChunk( data, chunk );
		var material = new MeshPhongMaterial();

		while ( next !== 0 ) {

			if ( next === MAT_NAME ) {

				material.name = this.readString( data, 64 );
				this.debugMessage( '   Name: ' + material.name );

			} else if ( next === MAT_WIRE ) {

				this.debugMessage( '   Wireframe' );
				material.wireframe = true;

			} else if ( next === MAT_WIRE_SIZE ) {

				var value = this.readByte( data );
				material.wireframeLinewidth = value;
				this.debugMessage( '   Wireframe Thickness: ' + value );

			} else if ( next === MAT_TWO_SIDE ) {

				material.side = DoubleSide;
				this.debugMessage( '   DoubleSided' );

			} else if ( next === MAT_ADDITIVE ) {

				this.debugMessage( '   Additive Blending' );
				material.blending = AdditiveBlending;

			} else if ( next === MAT_DIFFUSE ) {

				this.debugMessage( '   Diffuse Color' );
				material.color = this.readColor( data );

			} else if ( next === MAT_SPECULAR ) {

				this.debugMessage( '   Specular Color' );
				material.specular = this.readColor( data );

			} else if ( next === MAT_AMBIENT ) {

				this.debugMessage( '   Ambient color' );
				material.color = this.readColor( data );

			} else if ( next === MAT_SHININESS ) {

				var shininess = this.readWord( data );
				material.shininess = shininess;
				this.debugMessage( '   Shininess : ' + shininess );

			} else if ( next === MAT_TRANSPARENCY ) {

				var opacity = this.readWord( data );
				material.opacity = opacity * 0.01;
				this.debugMessage( '  Opacity : ' + opacity );
				material.transparent = opacity < 100 ? true : false;

			} else if ( next === MAT_TEXMAP ) {

				this.debugMessage( '   ColorMap' );
				this.resetPosition( data );
				material.map = this.readMap( data, path );

			} else if ( next === MAT_BUMPMAP ) {

				this.debugMessage( '   BumpMap' );
				this.resetPosition( data );
				material.bumpMap = this.readMap( data, path );

			} else if ( next === MAT_OPACMAP ) {

				this.debugMessage( '   OpacityMap' );
				this.resetPosition( data );
				material.alphaMap = this.readMap( data, path );

			} else if ( next === MAT_SPECMAP ) {

				this.debugMessage( '   SpecularMap' );
				this.resetPosition( data );
				material.specularMap = this.readMap( data, path );

			} else {

				this.debugMessage( '   Unknown material chunk: ' + next.toString( 16 ) );

			}

			next = this.nextChunk( data, chunk );

		}

		this.endChunk( chunk );

		this.materials[ material.name ] = material;

	},

	/**
	 * Read mesh data chunk.
	 *
	 * @method readMesh
	 * @param {Dataview} data Dataview in use.
	 * @return {Mesh} The parsed mesh.
	 */
	readMesh: function ( data ) {

		var chunk = this.readChunk( data );
		var next = this.nextChunk( data, chunk );

		var geometry = new BufferGeometry();
		var uvs = [];

		var material = new MeshPhongMaterial();
		var mesh = new Mesh( geometry, material );
		mesh.name = 'mesh';

		while ( next !== 0 ) {

			if ( next === POINT_ARRAY ) {

				var points = this.readWord( data );

				this.debugMessage( '   Vertex: ' + points );

				//BufferGeometry

				var vertices = [];

				for ( var i = 0; i < points; i ++ )		{

					vertices.push( this.readFloat( data ) );
					vertices.push( this.readFloat( data ) );
					vertices.push( this.readFloat( data ) );

				}

				geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );

			} else if ( next === FACE_ARRAY ) {

				this.resetPosition( data );
				this.readFaceArray( data, mesh );

			} else if ( next === TEX_VERTS ) {

				var texels = this.readWord( data );

				this.debugMessage( '   UV: ' + texels );

				//BufferGeometry

				var uvs = [];

				for ( var i = 0; i < texels; i ++ )		{

					uvs.push( this.readFloat( data ) );
					uvs.push( this.readFloat( data ) );

				}

				geometry.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );


			} else if ( next === MESH_MATRIX ) {

				this.debugMessage( '   Tranformation Matrix (TODO)' );

				var values = [];
				for ( var i = 0; i < 12; i ++ ) {

					values[ i ] = this.readFloat( data );

				}

				var matrix = new Matrix4();

				//X Line
				matrix.elements[ 0 ] = values[ 0 ];
				matrix.elements[ 1 ] = values[ 6 ];
				matrix.elements[ 2 ] = values[ 3 ];
				matrix.elements[ 3 ] = values[ 9 ];

				//Y Line
				matrix.elements[ 4 ] = values[ 2 ];
				matrix.elements[ 5 ] = values[ 8 ];
				matrix.elements[ 6 ] = values[ 5 ];
				matrix.elements[ 7 ] = values[ 11 ];

				//Z Line
				matrix.elements[ 8 ] = values[ 1 ];
				matrix.elements[ 9 ] = values[ 7 ];
				matrix.elements[ 10 ] = values[ 4 ];
				matrix.elements[ 11 ] = values[ 10 ];

				//W Line
				matrix.elements[ 12 ] = 0;
				matrix.elements[ 13 ] = 0;
				matrix.elements[ 14 ] = 0;
				matrix.elements[ 15 ] = 1;

				matrix.transpose();

				var inverse = new Matrix4();
				inverse.getInverse( matrix );
				geometry.applyMatrix4( inverse );

				matrix.decompose( mesh.position, mesh.quaternion, mesh.scale );

			} else {

				this.debugMessage( '   Unknown mesh chunk: ' + next.toString( 16 ) );

			}

			next = this.nextChunk( data, chunk );

		}

		this.endChunk( chunk );

		geometry.computeVertexNormals();

		return mesh;

	},

	/**
	 * Read face array data chunk.
	 *
	 * @method readFaceArray
	 * @param {Dataview} data Dataview in use.
	 * @param {Mesh} mesh Mesh to be filled with the data read.
	 */
	readFaceArray: function ( data, mesh ) {

		var chunk = this.readChunk( data );
		var faces = this.readWord( data );

		this.debugMessage( '   Faces: ' + faces );

		var index = [];

		for ( var i = 0; i < faces; ++ i ) {

			index.push( this.readWord( data ), this.readWord( data ), this.readWord( data ) );

			this.readWord( data ); // visibility

		}

		mesh.geometry.setIndex( index );

		//The rest of the FACE_ARRAY chunk is subchunks

		while ( this.position < chunk.end ) {

			var chunk = this.readChunk( data );

			if ( chunk.id === MSH_MAT_GROUP ) {

				this.debugMessage( '      Material Group' );

				this.resetPosition( data );

				var group = this.readMaterialGroup( data );

				var material = this.materials[ group.name ];

				if ( material !== undefined )	{

					mesh.material = material;

					if ( material.name === '' )		{

						material.name = mesh.name;

					}

				}

			} else {

				this.debugMessage( '      Unknown face array chunk: ' + chunk.toString( 16 ) );

			}

			this.endChunk( chunk );

		}

		this.endChunk( chunk );

	},

	/**
	 * Read texture map data chunk.
	 *
	 * @method readMap
	 * @param {Dataview} data Dataview in use.
	 * @param {String} path Path for external resources.
	 * @return {Texture} Texture read from this data chunk.
	 */
	readMap: function ( data, path ) {

		var chunk = this.readChunk( data );
		var next = this.nextChunk( data, chunk );
		var texture = {};

		var loader = new TextureLoader( this.manager );
		loader.setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );

		while ( next !== 0 ) {

			if ( next === MAT_MAPNAME ) {

				var name = this.readString( data, 128 );
				texture = loader.load( name );

				this.debugMessage( '      File: ' + path + name );

			} else if ( next === MAT_MAP_UOFFSET ) {

				texture.offset.x = this.readFloat( data );
				this.debugMessage( '      OffsetX: ' + texture.offset.x );

			} else if ( next === MAT_MAP_VOFFSET ) {

				texture.offset.y = this.readFloat( data );
				this.debugMessage( '      OffsetY: ' + texture.offset.y );

			} else if ( next === MAT_MAP_USCALE ) {

				texture.repeat.x = this.readFloat( data );
				this.debugMessage( '      RepeatX: ' + texture.repeat.x );

			} else if ( next === MAT_MAP_VSCALE ) {

				texture.repeat.y = this.readFloat( data );
				this.debugMessage( '      RepeatY: ' + texture.repeat.y );

			} else {

				this.debugMessage( '      Unknown map chunk: ' + next.toString( 16 ) );

			}

			next = this.nextChunk( data, chunk );

		}

		this.endChunk( chunk );

		return texture;

	},

	/**
	 * Read material group data chunk.
	 *
	 * @method readMaterialGroup
	 * @param {Dataview} data Dataview in use.
	 * @return {Object} Object with name and index of the object.
	 */
	readMaterialGroup: function ( data ) {

		this.readChunk( data );
		var name = this.readString( data, 64 );
		var numFaces = this.readWord( data );

		this.debugMessage( '         Name: ' + name );
		this.debugMessage( '         Faces: ' + numFaces );

		var index = [];
		for ( var i = 0; i < numFaces; ++ i ) {

			index.push( this.readWord( data ) );

		}

		return { name: name, index: index };

	},

	/**
	 * Read a color value.
	 *
	 * @method readColor
	 * @param {DataView} data Dataview.
	 * @return {Color} Color value read..
	 */
	readColor: function ( data ) {

		var chunk = this.readChunk( data );
		var color = new Color();

		if ( chunk.id === COLOR_24 || chunk.id === LIN_COLOR_24 ) {

			var r = this.readByte( data );
			var g = this.readByte( data );
			var b = this.readByte( data );

			color.setRGB( r / 255, g / 255, b / 255 );

			this.debugMessage( '      Color: ' + color.r + ', ' + color.g + ', ' + color.b );

		}	else if ( chunk.id === COLOR_F || chunk.id === LIN_COLOR_F ) {

			var r = this.readFloat( data );
			var g = this.readFloat( data );
			var b = this.readFloat( data );

			color.setRGB( r, g, b );

			this.debugMessage( '      Color: ' + color.r + ', ' + color.g + ', ' + color.b );

		}	else {

			this.debugMessage( '      Unknown color chunk: ' + chunk.toString( 16 ) );

		}

		this.endChunk( chunk );
		return color;

	},

	/**
	 * Read next chunk of data.
	 *
	 * @method readChunk
	 * @param {DataView} data Dataview.
	 * @return {Object} Chunk of data read.
	 */
	readChunk: function ( data ) {

		var chunk = {};

		chunk.cur = this.position;
		chunk.id = this.readWord( data );
		chunk.size = this.readDWord( data );
		chunk.end = chunk.cur + chunk.size;
		chunk.cur += 6;

		return chunk;

	},

	/**
	 * Set position to the end of the current chunk of data.
	 *
	 * @method endChunk
	 * @param {Object} chunk Data chunk.
	 */
	endChunk: function ( chunk ) {

		this.position = chunk.end;

	},

	/**
	 * Move to the next data chunk.
	 *
	 * @method nextChunk
	 * @param {DataView} data Dataview.
	 * @param {Object} chunk Data chunk.
	 */
	nextChunk: function ( data, chunk ) {

		if ( chunk.cur >= chunk.end ) {

			return 0;

		}

		this.position = chunk.cur;

		try {

			var next = this.readChunk( data );
			chunk.cur += next.size;
			return next.id;

		}	catch ( e ) {

			this.debugMessage( 'Unable to read chunk at ' + this.position );
			return 0;

		}

	},

	/**
	 * Reset dataview position.
	 *
	 * @method resetPosition
	 */
	resetPosition: function () {

		this.position -= 6;

	},

	/**
	 * Read byte value.
	 *
	 * @method readByte
	 * @param {DataView} data Dataview to read data from.
	 * @return {Number} Data read from the dataview.
	 */
	readByte: function ( data ) {

		var v = data.getUint8( this.position, true );
		this.position += 1;
		return v;

	},

	/**
	 * Read 32 bit float value.
	 *
	 * @method readFloat
	 * @param {DataView} data Dataview to read data from.
	 * @return {Number} Data read from the dataview.
	 */
	readFloat: function ( data ) {

		try {

			var v = data.getFloat32( this.position, true );
			this.position += 4;
			return v;

		}	catch ( e ) {

			this.debugMessage( e + ' ' + this.position + ' ' + data.byteLength );

		}

	},

	/**
	 * Read 32 bit signed integer value.
	 *
	 * @method readInt
	 * @param {DataView} data Dataview to read data from.
	 * @return {Number} Data read from the dataview.
	 */
	readInt: function ( data ) {

		var v = data.getInt32( this.position, true );
		this.position += 4;
		return v;

	},

	/**
	 * Read 16 bit signed integer value.
	 *
	 * @method readShort
	 * @param {DataView} data Dataview to read data from.
	 * @return {Number} Data read from the dataview.
	 */
	readShort: function ( data ) {

		var v = data.getInt16( this.position, true );
		this.position += 2;
		return v;

	},

	/**
	 * Read 64 bit unsigned integer value.
	 *
	 * @method readDWord
	 * @param {DataView} data Dataview to read data from.
	 * @return {Number} Data read from the dataview.
	 */
	readDWord: function ( data ) {

		var v = data.getUint32( this.position, true );
		this.position += 4;
		return v;

	},

	/**
	 * Read 32 bit unsigned integer value.
	 *
	 * @method readWord
	 * @param {DataView} data Dataview to read data from.
	 * @return {Number} Data read from the dataview.
	 */
	readWord: function ( data ) {

		var v = data.getUint16( this.position, true );
		this.position += 2;
		return v;

	},

	/**
	 * Read string value.
	 *
	 * @method readString
	 * @param {DataView} data Dataview to read data from.
	 * @param {Number} maxLength Max size of the string to be read.
	 * @return {String} Data read from the dataview.
	 */
	readString: function ( data, maxLength ) {

		var s = '';

		for ( var i = 0; i < maxLength; i ++ ) {

			var c = this.readByte( data );
			if ( ! c ) {

				break;

			}

			s += String.fromCharCode( c );

		}

		return s;

	},

	/**
	 * Print debug message to the console.
	 *
	 * Is controlled by a flag to show or hide debug messages.
	 *
	 * @method debugMessage
	 * @param {Object} message Debug message to print to the console.
	 */
	debugMessage: function ( message ) {

		if ( this.debug ) {

			console.log( message );

		}

	}

} );
Example #14
Source File: index.js    From map33.js with MIT License 4 votes vote down vote up
function InfiniteGridHelper(size1, size2, color, distance) {
    color = color || new Color("white");
    size1 = size1 || 10;
    size2 = size2 || 100;

    distance = distance || 8000;

    const geometry = new PlaneBufferGeometry(2, 2, 1, 1);

    const material = new ShaderMaterial({
      side: DoubleSide,

      uniforms: {
        uSize1: {
          value: size1,
        },
        uSize2: {
          value: size2,
        },
        uColor: {
          value: color,
        },
        uDistance: {
          value: distance,
        },
      },
      transparent: true,
      vertexShader: `

           varying vec3 worldPosition;

           uniform float uDistance;

           void main() {

                vec3 pos = position.xyz * uDistance;
                pos.xy += cameraPosition.xy;

                worldPosition = pos;

                gl_Position = projectionMatrix * modelViewMatrix * vec4(pos, 1.0);

           }
           `,

      fragmentShader: `

           varying vec3 worldPosition;

           uniform float uSize1;
           uniform float uSize2;
           uniform vec3 uColor;
           uniform float uDistance;



            float getGrid(float size) {

                vec2 r = worldPosition.xy / size;


                vec2 grid = abs(fract(r - 0.5) - 0.5) / fwidth(r);
                float line = min(grid.x, grid.y);


                return 1.0 - min(line, 1.0);
            }

           void main() {


                  float d = 1.0 - min(distance(cameraPosition.xz, worldPosition.xz) / uDistance, 1.0);

                  float g1 = getGrid(uSize1);
                  float g2 = getGrid(uSize2);


                  gl_FragColor = vec4(uColor.rgb, mix(g2, g1, g1) * pow(d, 3.0));
                  gl_FragColor.a = mix(0.5 * gl_FragColor.a, gl_FragColor.a, g2);

                  if ( gl_FragColor.a <= 0.0 ) discard;


           }

           `,

      extensions: {
        derivatives: true,
      },
    });

    Mesh.call(this, geometry, material);

    this.up.set(0, 0, 1);

    this.frustumCulled = false;
  }
Example #15
Source File: GLTFLoader.js    From FirstPersonCameraControl with MIT License 4 votes vote down vote up
GLTFLoader = ( function () {

	function GLTFLoader( manager ) {

		Loader.call( this, manager );

		this.dracoLoader = null;
		this.ddsLoader = null;

	}

	GLTFLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: GLTFLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			var scope = this;

			var resourcePath;

			if ( this.resourcePath !== '' ) {

				resourcePath = this.resourcePath;

			} else if ( this.path !== '' ) {

				resourcePath = this.path;

			} else {

				resourcePath = LoaderUtils.extractUrlBase( url );

			}

			// Tells the LoadingManager to track an extra item, which resolves after
			// the model is fully loaded. This means the count of items loaded will
			// be incorrect, but ensures manager.onLoad() does not fire early.
			scope.manager.itemStart( url );

			var _onError = function ( e ) {

				if ( onError ) {

					onError( e );

				} else {

					console.error( e );

				}

				scope.manager.itemError( url );
				scope.manager.itemEnd( url );

			};

			var loader = new FileLoader( scope.manager );

			loader.setPath( this.path );
			loader.setResponseType( 'arraybuffer' );

			if ( scope.crossOrigin === 'use-credentials' ) {

				loader.setWithCredentials( true );

			}

			loader.load( url, function ( data ) {

				try {

					scope.parse( data, resourcePath, function ( gltf ) {

						onLoad( gltf );

						scope.manager.itemEnd( url );

					}, _onError );

				} catch ( e ) {

					_onError( e );

				}

			}, onProgress, _onError );

		},

		setDRACOLoader: function ( dracoLoader ) {

			this.dracoLoader = dracoLoader;
			return this;

		},

		setDDSLoader: function ( ddsLoader ) {

			this.ddsLoader = ddsLoader;
			return this;

		},

		parse: function ( data, path, onLoad, onError ) {

			var content;
			var extensions = {};

			if ( typeof data === 'string' ) {

				content = data;

			} else {

				var magic = LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) );

				if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) {

					try {

						extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data );

					} catch ( error ) {

						if ( onError ) onError( error );
						return;

					}

					content = extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content;

				} else {

					content = LoaderUtils.decodeText( new Uint8Array( data ) );

				}

			}

			var json = JSON.parse( content );

			if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) {

				if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) );
				return;

			}

			if ( json.extensionsUsed ) {

				for ( var i = 0; i < json.extensionsUsed.length; ++ i ) {

					var extensionName = json.extensionsUsed[ i ];
					var extensionsRequired = json.extensionsRequired || [];

					switch ( extensionName ) {

						case EXTENSIONS.KHR_LIGHTS_PUNCTUAL:
							extensions[ extensionName ] = new GLTFLightsExtension( json );
							break;

						case EXTENSIONS.KHR_MATERIALS_CLEARCOAT:
							extensions[ extensionName ] = new GLTFMaterialsClearcoatExtension();
							break;

						case EXTENSIONS.KHR_MATERIALS_UNLIT:
							extensions[ extensionName ] = new GLTFMaterialsUnlitExtension();
							break;

						case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
							extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension();
							break;

						case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
							extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader );
							break;

						case EXTENSIONS.MSFT_TEXTURE_DDS:
							extensions[ extensionName ] = new GLTFTextureDDSExtension( this.ddsLoader );
							break;

						case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
							extensions[ extensionName ] = new GLTFTextureTransformExtension();
							break;

						case EXTENSIONS.KHR_MESH_QUANTIZATION:
							extensions[ extensionName ] = new GLTFMeshQuantizationExtension();
							break;

						default:

							if ( extensionsRequired.indexOf( extensionName ) >= 0 ) {

								console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );

							}

					}

				}

			}

			var parser = new GLTFParser( json, extensions, {

				path: path || this.resourcePath || '',
				crossOrigin: this.crossOrigin,
				manager: this.manager

			} );

			parser.parse( onLoad, onError );

		}

	} );

	/* GLTFREGISTRY */

	function GLTFRegistry() {

		var objects = {};

		return	{

			get: function ( key ) {

				return objects[ key ];

			},

			add: function ( key, object ) {

				objects[ key ] = object;

			},

			remove: function ( key ) {

				delete objects[ key ];

			},

			removeAll: function () {

				objects = {};

			}

		};

	}

	/*********************************/
	/********** EXTENSIONS ***********/
	/*********************************/

	var EXTENSIONS = {
		KHR_BINARY_GLTF: 'KHR_binary_glTF',
		KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression',
		KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual',
		KHR_MATERIALS_CLEARCOAT: 'KHR_materials_clearcoat',
		KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness',
		KHR_MATERIALS_UNLIT: 'KHR_materials_unlit',
		KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform',
		KHR_MESH_QUANTIZATION: 'KHR_mesh_quantization',
		MSFT_TEXTURE_DDS: 'MSFT_texture_dds'
	};

	/**
	 * DDS Texture Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds
	 *
	 */
	function GLTFTextureDDSExtension( ddsLoader ) {

		if ( ! ddsLoader ) {

			throw new Error( 'THREE.GLTFLoader: Attempting to load .dds texture without importing DDSLoader' );

		}

		this.name = EXTENSIONS.MSFT_TEXTURE_DDS;
		this.ddsLoader = ddsLoader;

	}

	/**
	 * Punctual Lights Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
	 */
	function GLTFLightsExtension( json ) {

		this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;

		var extension = ( json.extensions && json.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ] ) || {};
		this.lightDefs = extension.lights || [];

	}

	GLTFLightsExtension.prototype.loadLight = function ( lightIndex ) {

		var lightDef = this.lightDefs[ lightIndex ];
		var lightNode;

		var color = new Color( 0xffffff );
		if ( lightDef.color !== undefined ) color.fromArray( lightDef.color );

		var range = lightDef.range !== undefined ? lightDef.range : 0;

		switch ( lightDef.type ) {

			case 'directional':
				lightNode = new DirectionalLight( color );
				lightNode.target.position.set( 0, 0, - 1 );
				lightNode.add( lightNode.target );
				break;

			case 'point':
				lightNode = new PointLight( color );
				lightNode.distance = range;
				break;

			case 'spot':
				lightNode = new SpotLight( color );
				lightNode.distance = range;
				// Handle spotlight properties.
				lightDef.spot = lightDef.spot || {};
				lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
				lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
				lightNode.angle = lightDef.spot.outerConeAngle;
				lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
				lightNode.target.position.set( 0, 0, - 1 );
				lightNode.add( lightNode.target );
				break;

			default:
				throw new Error( 'THREE.GLTFLoader: Unexpected light type, "' + lightDef.type + '".' );

		}

		// Some lights (e.g. spot) default to a position other than the origin. Reset the position
		// here, because node-level parsing will only override position if explicitly specified.
		lightNode.position.set( 0, 0, 0 );

		lightNode.decay = 2;

		if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity;

		lightNode.name = lightDef.name || ( 'light_' + lightIndex );

		return Promise.resolve( lightNode );

	};

	/**
	 * Unlit Materials Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit
	 */
	function GLTFMaterialsUnlitExtension() {

		this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;

	}

	GLTFMaterialsUnlitExtension.prototype.getMaterialType = function () {

		return MeshBasicMaterial;

	};

	GLTFMaterialsUnlitExtension.prototype.extendParams = function ( materialParams, materialDef, parser ) {

		var pending = [];

		materialParams.color = new Color( 1.0, 1.0, 1.0 );
		materialParams.opacity = 1.0;

		var metallicRoughness = materialDef.pbrMetallicRoughness;

		if ( metallicRoughness ) {

			if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {

				var array = metallicRoughness.baseColorFactor;

				materialParams.color.fromArray( array );
				materialParams.opacity = array[ 3 ];

			}

			if ( metallicRoughness.baseColorTexture !== undefined ) {

				pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) );

			}

		}

		return Promise.all( pending );

	};

	/**
	 * Clearcoat Materials Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat
	 */
	function GLTFMaterialsClearcoatExtension() {

		this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT;

	}

	GLTFMaterialsClearcoatExtension.prototype.getMaterialType = function () {

		return MeshPhysicalMaterial;

	};

	GLTFMaterialsClearcoatExtension.prototype.extendParams = function ( materialParams, materialDef, parser ) {

		var pending = [];

		var extension = materialDef.extensions[ this.name ];

		if ( extension.clearcoatFactor !== undefined ) {

			materialParams.clearcoat = extension.clearcoatFactor;

		}

		if ( extension.clearcoatTexture !== undefined ) {

			pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) );

		}

		if ( extension.clearcoatRoughnessFactor !== undefined ) {

			materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor;

		}

		if ( extension.clearcoatRoughnessTexture !== undefined ) {

			pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) );

		}

		if ( extension.clearcoatNormalTexture !== undefined ) {

			pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) );

			if ( extension.clearcoatNormalTexture.scale !== undefined ) {

				var scale = extension.clearcoatNormalTexture.scale;

				materialParams.clearcoatNormalScale = new Vector2( scale, scale );

			}

		}

		return Promise.all( pending );

	};

	/* BINARY EXTENSION */
	var BINARY_EXTENSION_HEADER_MAGIC = 'glTF';
	var BINARY_EXTENSION_HEADER_LENGTH = 12;
	var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 };

	function GLTFBinaryExtension( data ) {

		this.name = EXTENSIONS.KHR_BINARY_GLTF;
		this.content = null;
		this.body = null;

		var headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH );

		this.header = {
			magic: LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ),
			version: headerView.getUint32( 4, true ),
			length: headerView.getUint32( 8, true )
		};

		if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) {

			throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' );

		} else if ( this.header.version < 2.0 ) {

			throw new Error( 'THREE.GLTFLoader: Legacy binary file detected.' );

		}

		var chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH );
		var chunkIndex = 0;

		while ( chunkIndex < chunkView.byteLength ) {

			var chunkLength = chunkView.getUint32( chunkIndex, true );
			chunkIndex += 4;

			var chunkType = chunkView.getUint32( chunkIndex, true );
			chunkIndex += 4;

			if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) {

				var contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength );
				this.content = LoaderUtils.decodeText( contentArray );

			} else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) {

				var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
				this.body = data.slice( byteOffset, byteOffset + chunkLength );

			}

			// Clients must ignore chunks with unknown types.

			chunkIndex += chunkLength;

		}

		if ( this.content === null ) {

			throw new Error( 'THREE.GLTFLoader: JSON content not found.' );

		}

	}

	/**
	 * DRACO Mesh Compression Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression
	 */
	function GLTFDracoMeshCompressionExtension( json, dracoLoader ) {

		if ( ! dracoLoader ) {

			throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' );

		}

		this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
		this.json = json;
		this.dracoLoader = dracoLoader;
		this.dracoLoader.preload();

	}

	GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function ( primitive, parser ) {

		var json = this.json;
		var dracoLoader = this.dracoLoader;
		var bufferViewIndex = primitive.extensions[ this.name ].bufferView;
		var gltfAttributeMap = primitive.extensions[ this.name ].attributes;
		var threeAttributeMap = {};
		var attributeNormalizedMap = {};
		var attributeTypeMap = {};

		for ( var attributeName in gltfAttributeMap ) {

			var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();

			threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ];

		}

		for ( attributeName in primitive.attributes ) {

			var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();

			if ( gltfAttributeMap[ attributeName ] !== undefined ) {

				var accessorDef = json.accessors[ primitive.attributes[ attributeName ] ];
				var componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];

				attributeTypeMap[ threeAttributeName ] = componentType;
				attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true;

			}

		}

		return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {

			return new Promise( function ( resolve ) {

				dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {

					for ( var attributeName in geometry.attributes ) {

						var attribute = geometry.attributes[ attributeName ];
						var normalized = attributeNormalizedMap[ attributeName ];

						if ( normalized !== undefined ) attribute.normalized = normalized;

					}

					resolve( geometry );

				}, threeAttributeMap, attributeTypeMap );

			} );

		} );

	};

	/**
	 * Texture Transform Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_transform
	 */
	function GLTFTextureTransformExtension() {

		this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;

	}

	GLTFTextureTransformExtension.prototype.extendTexture = function ( texture, transform ) {

		texture = texture.clone();

		if ( transform.offset !== undefined ) {

			texture.offset.fromArray( transform.offset );

		}

		if ( transform.rotation !== undefined ) {

			texture.rotation = transform.rotation;

		}

		if ( transform.scale !== undefined ) {

			texture.repeat.fromArray( transform.scale );

		}

		if ( transform.texCoord !== undefined ) {

			console.warn( 'THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.' );

		}

		texture.needsUpdate = true;

		return texture;

	};

	/**
	 * Specular-Glossiness Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness
	 */

	/**
	 * A sub class of StandardMaterial with some of the functionality
	 * changed via the `onBeforeCompile` callback
	 * @pailhead
	 */

	function GLTFMeshStandardSGMaterial( params ) {

		MeshStandardMaterial.call( this );

		this.isGLTFSpecularGlossinessMaterial = true;

		//various chunks that need replacing
		var specularMapParsFragmentChunk = [
			'#ifdef USE_SPECULARMAP',
			'	uniform sampler2D specularMap;',
			'#endif'
		].join( '\n' );

		var glossinessMapParsFragmentChunk = [
			'#ifdef USE_GLOSSINESSMAP',
			'	uniform sampler2D glossinessMap;',
			'#endif'
		].join( '\n' );

		var specularMapFragmentChunk = [
			'vec3 specularFactor = specular;',
			'#ifdef USE_SPECULARMAP',
			'	vec4 texelSpecular = texture2D( specularMap, vUv );',
			'	texelSpecular = sRGBToLinear( texelSpecular );',
			'	// reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture',
			'	specularFactor *= texelSpecular.rgb;',
			'#endif'
		].join( '\n' );

		var glossinessMapFragmentChunk = [
			'float glossinessFactor = glossiness;',
			'#ifdef USE_GLOSSINESSMAP',
			'	vec4 texelGlossiness = texture2D( glossinessMap, vUv );',
			'	// reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture',
			'	glossinessFactor *= texelGlossiness.a;',
			'#endif'
		].join( '\n' );

		var lightPhysicalFragmentChunk = [
			'PhysicalMaterial material;',
			'material.diffuseColor = diffuseColor.rgb;',
			'vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );',
			'float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );',
			'material.specularRoughness = max( 1.0 - glossinessFactor, 0.0525 );// 0.0525 corresponds to the base mip of a 256 cubemap.',
			'material.specularRoughness += geometryRoughness;',
			'material.specularRoughness = min( material.specularRoughness, 1.0 );',
			'material.specularColor = specularFactor.rgb;',
		].join( '\n' );

		var uniforms = {
			specular: { value: new Color().setHex( 0xffffff ) },
			glossiness: { value: 1 },
			specularMap: { value: null },
			glossinessMap: { value: null }
		};

		this._extraUniforms = uniforms;

		// please see #14031 or #13198 for an alternate approach
		this.onBeforeCompile = function ( shader ) {

			for ( var uniformName in uniforms ) {

				shader.uniforms[ uniformName ] = uniforms[ uniformName ];

			}

			shader.fragmentShader = shader.fragmentShader.replace( 'uniform float roughness;', 'uniform vec3 specular;' );
			shader.fragmentShader = shader.fragmentShader.replace( 'uniform float metalness;', 'uniform float glossiness;' );
			shader.fragmentShader = shader.fragmentShader.replace( '#include <roughnessmap_pars_fragment>', specularMapParsFragmentChunk );
			shader.fragmentShader = shader.fragmentShader.replace( '#include <metalnessmap_pars_fragment>', glossinessMapParsFragmentChunk );
			shader.fragmentShader = shader.fragmentShader.replace( '#include <roughnessmap_fragment>', specularMapFragmentChunk );
			shader.fragmentShader = shader.fragmentShader.replace( '#include <metalnessmap_fragment>', glossinessMapFragmentChunk );
			shader.fragmentShader = shader.fragmentShader.replace( '#include <lights_physical_fragment>', lightPhysicalFragmentChunk );

		};

		/*eslint-disable*/
		Object.defineProperties(
			this,
			{
				specular: {
					get: function () { return uniforms.specular.value; },
					set: function ( v ) { uniforms.specular.value = v; }
				},
				specularMap: {
					get: function () { return uniforms.specularMap.value; },
					set: function ( v ) { uniforms.specularMap.value = v; }
				},
				glossiness: {
					get: function () { return uniforms.glossiness.value; },
					set: function ( v ) { uniforms.glossiness.value = v; }
				},
				glossinessMap: {
					get: function () { return uniforms.glossinessMap.value; },
					set: function ( v ) {

						uniforms.glossinessMap.value = v;
						//how about something like this - @pailhead
						if ( v ) {

							this.defines.USE_GLOSSINESSMAP = '';
							// set USE_ROUGHNESSMAP to enable vUv
							this.defines.USE_ROUGHNESSMAP = '';

						} else {

							delete this.defines.USE_ROUGHNESSMAP;
							delete this.defines.USE_GLOSSINESSMAP;

						}

					}
				}
			}
		);

		/*eslint-enable*/
		delete this.metalness;
		delete this.roughness;
		delete this.metalnessMap;
		delete this.roughnessMap;

		this.setValues( params );

	}

	GLTFMeshStandardSGMaterial.prototype = Object.create( MeshStandardMaterial.prototype );
	GLTFMeshStandardSGMaterial.prototype.constructor = GLTFMeshStandardSGMaterial;

	GLTFMeshStandardSGMaterial.prototype.copy = function ( source ) {

		MeshStandardMaterial.prototype.copy.call( this, source );
		this.specularMap = source.specularMap;
		this.specular.copy( source.specular );
		this.glossinessMap = source.glossinessMap;
		this.glossiness = source.glossiness;
		delete this.metalness;
		delete this.roughness;
		delete this.metalnessMap;
		delete this.roughnessMap;
		return this;

	};

	function GLTFMaterialsPbrSpecularGlossinessExtension() {

		return {

			name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS,

			specularGlossinessParams: [
				'color',
				'map',
				'lightMap',
				'lightMapIntensity',
				'aoMap',
				'aoMapIntensity',
				'emissive',
				'emissiveIntensity',
				'emissiveMap',
				'bumpMap',
				'bumpScale',
				'normalMap',
				'normalMapType',
				'displacementMap',
				'displacementScale',
				'displacementBias',
				'specularMap',
				'specular',
				'glossinessMap',
				'glossiness',
				'alphaMap',
				'envMap',
				'envMapIntensity',
				'refractionRatio',
			],

			getMaterialType: function () {

				return GLTFMeshStandardSGMaterial;

			},

			extendParams: function ( materialParams, materialDef, parser ) {

				var pbrSpecularGlossiness = materialDef.extensions[ this.name ];

				materialParams.color = new Color( 1.0, 1.0, 1.0 );
				materialParams.opacity = 1.0;

				var pending = [];

				if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) {

					var array = pbrSpecularGlossiness.diffuseFactor;

					materialParams.color.fromArray( array );
					materialParams.opacity = array[ 3 ];

				}

				if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) {

					pending.push( parser.assignTexture( materialParams, 'map', pbrSpecularGlossiness.diffuseTexture ) );

				}

				materialParams.emissive = new Color( 0.0, 0.0, 0.0 );
				materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0;
				materialParams.specular = new Color( 1.0, 1.0, 1.0 );

				if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) {

					materialParams.specular.fromArray( pbrSpecularGlossiness.specularFactor );

				}

				if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) {

					var specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture;
					pending.push( parser.assignTexture( materialParams, 'glossinessMap', specGlossMapDef ) );
					pending.push( parser.assignTexture( materialParams, 'specularMap', specGlossMapDef ) );

				}

				return Promise.all( pending );

			},

			createMaterial: function ( materialParams ) {

				var material = new GLTFMeshStandardSGMaterial( materialParams );
				material.fog = true;

				material.color = materialParams.color;

				material.map = materialParams.map === undefined ? null : materialParams.map;

				material.lightMap = null;
				material.lightMapIntensity = 1.0;

				material.aoMap = materialParams.aoMap === undefined ? null : materialParams.aoMap;
				material.aoMapIntensity = 1.0;

				material.emissive = materialParams.emissive;
				material.emissiveIntensity = 1.0;
				material.emissiveMap = materialParams.emissiveMap === undefined ? null : materialParams.emissiveMap;

				material.bumpMap = materialParams.bumpMap === undefined ? null : materialParams.bumpMap;
				material.bumpScale = 1;

				material.normalMap = materialParams.normalMap === undefined ? null : materialParams.normalMap;
				material.normalMapType = TangentSpaceNormalMap;

				if ( materialParams.normalScale ) material.normalScale = materialParams.normalScale;

				material.displacementMap = null;
				material.displacementScale = 1;
				material.displacementBias = 0;

				material.specularMap = materialParams.specularMap === undefined ? null : materialParams.specularMap;
				material.specular = materialParams.specular;

				material.glossinessMap = materialParams.glossinessMap === undefined ? null : materialParams.glossinessMap;
				material.glossiness = materialParams.glossiness;

				material.alphaMap = null;

				material.envMap = materialParams.envMap === undefined ? null : materialParams.envMap;
				material.envMapIntensity = 1.0;

				material.refractionRatio = 0.98;

				return material;

			},

		};

	}

	/**
	 * Mesh Quantization Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization
	 */
	function GLTFMeshQuantizationExtension() {

		this.name = EXTENSIONS.KHR_MESH_QUANTIZATION;

	}

	/*********************************/
	/********** INTERPOLATION ********/
	/*********************************/

	// Spline Interpolation
	// Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
	function GLTFCubicSplineInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

		Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

	}

	GLTFCubicSplineInterpolant.prototype = Object.create( Interpolant.prototype );
	GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant;

	GLTFCubicSplineInterpolant.prototype.copySampleValue_ = function ( index ) {

		// Copies a sample value to the result buffer. See description of glTF
		// CUBICSPLINE values layout in interpolate_() function below.

		var result = this.resultBuffer,
			values = this.sampleValues,
			valueSize = this.valueSize,
			offset = index * valueSize * 3 + valueSize;

		for ( var i = 0; i !== valueSize; i ++ ) {

			result[ i ] = values[ offset + i ];

		}

		return result;

	};

	GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;

	GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;

	GLTFCubicSplineInterpolant.prototype.interpolate_ = function ( i1, t0, t, t1 ) {

		var result = this.resultBuffer;
		var values = this.sampleValues;
		var stride = this.valueSize;

		var stride2 = stride * 2;
		var stride3 = stride * 3;

		var td = t1 - t0;

		var p = ( t - t0 ) / td;
		var pp = p * p;
		var ppp = pp * p;

		var offset1 = i1 * stride3;
		var offset0 = offset1 - stride3;

		var s2 = - 2 * ppp + 3 * pp;
		var s3 = ppp - pp;
		var s0 = 1 - s2;
		var s1 = s3 - pp + p;

		// Layout of keyframe output values for CUBICSPLINE animations:
		//   [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
		for ( var i = 0; i !== stride; i ++ ) {

			var p0 = values[ offset0 + i + stride ]; // splineVertex_k
			var m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k)
			var p1 = values[ offset1 + i + stride ]; // splineVertex_k+1
			var m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)

			result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;

		}

		return result;

	};

	/*********************************/
	/********** INTERNALS ************/
	/*********************************/

	/* CONSTANTS */

	var WEBGL_CONSTANTS = {
		FLOAT: 5126,
		//FLOAT_MAT2: 35674,
		FLOAT_MAT3: 35675,
		FLOAT_MAT4: 35676,
		FLOAT_VEC2: 35664,
		FLOAT_VEC3: 35665,
		FLOAT_VEC4: 35666,
		LINEAR: 9729,
		REPEAT: 10497,
		SAMPLER_2D: 35678,
		POINTS: 0,
		LINES: 1,
		LINE_LOOP: 2,
		LINE_STRIP: 3,
		TRIANGLES: 4,
		TRIANGLE_STRIP: 5,
		TRIANGLE_FAN: 6,
		UNSIGNED_BYTE: 5121,
		UNSIGNED_SHORT: 5123
	};

	var WEBGL_COMPONENT_TYPES = {
		5120: Int8Array,
		5121: Uint8Array,
		5122: Int16Array,
		5123: Uint16Array,
		5125: Uint32Array,
		5126: Float32Array
	};

	var WEBGL_FILTERS = {
		9728: NearestFilter,
		9729: LinearFilter,
		9984: NearestMipmapNearestFilter,
		9985: LinearMipmapNearestFilter,
		9986: NearestMipmapLinearFilter,
		9987: LinearMipmapLinearFilter
	};

	var WEBGL_WRAPPINGS = {
		33071: ClampToEdgeWrapping,
		33648: MirroredRepeatWrapping,
		10497: RepeatWrapping
	};

	var WEBGL_TYPE_SIZES = {
		'SCALAR': 1,
		'VEC2': 2,
		'VEC3': 3,
		'VEC4': 4,
		'MAT2': 4,
		'MAT3': 9,
		'MAT4': 16
	};

	var ATTRIBUTES = {
		POSITION: 'position',
		NORMAL: 'normal',
		TANGENT: 'tangent',
		TEXCOORD_0: 'uv',
		TEXCOORD_1: 'uv2',
		COLOR_0: 'color',
		WEIGHTS_0: 'skinWeight',
		JOINTS_0: 'skinIndex',
	};

	var PATH_PROPERTIES = {
		scale: 'scale',
		translation: 'position',
		rotation: 'quaternion',
		weights: 'morphTargetInfluences'
	};

	var INTERPOLATION = {
		CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each
		                        // keyframe track will be initialized with a default interpolation type, then modified.
		LINEAR: InterpolateLinear,
		STEP: InterpolateDiscrete
	};

	var ALPHA_MODES = {
		OPAQUE: 'OPAQUE',
		MASK: 'MASK',
		BLEND: 'BLEND'
	};

	var MIME_TYPE_FORMATS = {
		'image/png': RGBAFormat,
		'image/jpeg': RGBFormat
	};

	/* UTILITY FUNCTIONS */

	function resolveURL( url, path ) {

		// Invalid URL
		if ( typeof url !== 'string' || url === '' ) return '';

		// Host Relative URL
		if ( /^https?:\/\//i.test( path ) && /^\//.test( url ) ) {

			path = path.replace( /(^https?:\/\/[^\/]+).*/i, '$1' );

		}

		// Absolute URL http://,https://,//
		if ( /^(https?:)?\/\//i.test( url ) ) return url;

		// Data URI
		if ( /^data:.*,.*$/i.test( url ) ) return url;

		// Blob URL
		if ( /^blob:.*$/i.test( url ) ) return url;

		// Relative URL
		return path + url;

	}

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
	 */
	function createDefaultMaterial( cache ) {

		if ( cache[ 'DefaultMaterial' ] === undefined ) {

			cache[ 'DefaultMaterial' ] = new MeshStandardMaterial( {
				color: 0xFFFFFF,
				emissive: 0x000000,
				metalness: 1,
				roughness: 1,
				transparent: false,
				depthTest: true,
				side: FrontSide
			} );

		}

		return cache[ 'DefaultMaterial' ];

	}

	function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) {

		// Add unknown glTF extensions to an object's userData.

		for ( var name in objectDef.extensions ) {

			if ( knownExtensions[ name ] === undefined ) {

				object.userData.gltfExtensions = object.userData.gltfExtensions || {};
				object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ];

			}

		}

	}

	/**
	 * @param {Object3D|Material|BufferGeometry} object
	 * @param {GLTF.definition} gltfDef
	 */
	function assignExtrasToUserData( object, gltfDef ) {

		if ( gltfDef.extras !== undefined ) {

			if ( typeof gltfDef.extras === 'object' ) {

				Object.assign( object.userData, gltfDef.extras );

			} else {

				console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras );

			}

		}

	}

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
	 *
	 * @param {BufferGeometry} geometry
	 * @param {Array<GLTF.Target>} targets
	 * @param {GLTFParser} parser
	 * @return {Promise<BufferGeometry>}
	 */
	function addMorphTargets( geometry, targets, parser ) {

		var hasMorphPosition = false;
		var hasMorphNormal = false;

		for ( var i = 0, il = targets.length; i < il; i ++ ) {

			var target = targets[ i ];

			if ( target.POSITION !== undefined ) hasMorphPosition = true;
			if ( target.NORMAL !== undefined ) hasMorphNormal = true;

			if ( hasMorphPosition && hasMorphNormal ) break;

		}

		if ( ! hasMorphPosition && ! hasMorphNormal ) return Promise.resolve( geometry );

		var pendingPositionAccessors = [];
		var pendingNormalAccessors = [];

		for ( var i = 0, il = targets.length; i < il; i ++ ) {

			var target = targets[ i ];

			if ( hasMorphPosition ) {

				var pendingAccessor = target.POSITION !== undefined
					? parser.getDependency( 'accessor', target.POSITION )
					: geometry.attributes.position;

				pendingPositionAccessors.push( pendingAccessor );

			}

			if ( hasMorphNormal ) {

				var pendingAccessor = target.NORMAL !== undefined
					? parser.getDependency( 'accessor', target.NORMAL )
					: geometry.attributes.normal;

				pendingNormalAccessors.push( pendingAccessor );

			}

		}

		return Promise.all( [
			Promise.all( pendingPositionAccessors ),
			Promise.all( pendingNormalAccessors )
		] ).then( function ( accessors ) {

			var morphPositions = accessors[ 0 ];
			var morphNormals = accessors[ 1 ];

			if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions;
			if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals;
			geometry.morphTargetsRelative = true;

			return geometry;

		} );

	}

	/**
	 * @param {Mesh} mesh
	 * @param {GLTF.Mesh} meshDef
	 */
	function updateMorphTargets( mesh, meshDef ) {

		mesh.updateMorphTargets();

		if ( meshDef.weights !== undefined ) {

			for ( var i = 0, il = meshDef.weights.length; i < il; i ++ ) {

				mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ];

			}

		}

		// .extras has user-defined data, so check that .extras.targetNames is an array.
		if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) {

			var targetNames = meshDef.extras.targetNames;

			if ( mesh.morphTargetInfluences.length === targetNames.length ) {

				mesh.morphTargetDictionary = {};

				for ( var i = 0, il = targetNames.length; i < il; i ++ ) {

					mesh.morphTargetDictionary[ targetNames[ i ] ] = i;

				}

			} else {

				console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' );

			}

		}

	}

	function createPrimitiveKey( primitiveDef ) {

		var dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ];
		var geometryKey;

		if ( dracoExtension ) {

			geometryKey = 'draco:' + dracoExtension.bufferView
				+ ':' + dracoExtension.indices
				+ ':' + createAttributesKey( dracoExtension.attributes );

		} else {

			geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode;

		}

		return geometryKey;

	}

	function createAttributesKey( attributes ) {

		var attributesKey = '';

		var keys = Object.keys( attributes ).sort();

		for ( var i = 0, il = keys.length; i < il; i ++ ) {

			attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';';

		}

		return attributesKey;

	}

	/* GLTF PARSER */

	function GLTFParser( json, extensions, options ) {

		this.json = json || {};
		this.extensions = extensions || {};
		this.options = options || {};

		// loader object cache
		this.cache = new GLTFRegistry();

		// BufferGeometry caching
		this.primitiveCache = {};

		this.textureLoader = new TextureLoader( this.options.manager );
		this.textureLoader.setCrossOrigin( this.options.crossOrigin );

		this.fileLoader = new FileLoader( this.options.manager );
		this.fileLoader.setResponseType( 'arraybuffer' );

		if ( this.options.crossOrigin === 'use-credentials' ) {

			this.fileLoader.setWithCredentials( true );

		}

	}

	GLTFParser.prototype.parse = function ( onLoad, onError ) {

		var parser = this;
		var json = this.json;
		var extensions = this.extensions;

		// Clear the loader cache
		this.cache.removeAll();

		// Mark the special nodes/meshes in json for efficient parse
		this.markDefs();

		Promise.all( [

			this.getDependencies( 'scene' ),
			this.getDependencies( 'animation' ),
			this.getDependencies( 'camera' ),

		] ).then( function ( dependencies ) {

			var result = {
				scene: dependencies[ 0 ][ json.scene || 0 ],
				scenes: dependencies[ 0 ],
				animations: dependencies[ 1 ],
				cameras: dependencies[ 2 ],
				asset: json.asset,
				parser: parser,
				userData: {}
			};

			addUnknownExtensionsToUserData( extensions, result, json );

			assignExtrasToUserData( result, json );

			onLoad( result );

		} ).catch( onError );

	};

	/**
	 * Marks the special nodes/meshes in json for efficient parse.
	 */
	GLTFParser.prototype.markDefs = function () {

		var nodeDefs = this.json.nodes || [];
		var skinDefs = this.json.skins || [];
		var meshDefs = this.json.meshes || [];

		var meshReferences = {};
		var meshUses = {};

		// Nothing in the node definition indicates whether it is a Bone or an
		// Object3D. Use the skins' joint references to mark bones.
		for ( var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {

			var joints = skinDefs[ skinIndex ].joints;

			for ( var i = 0, il = joints.length; i < il; i ++ ) {

				nodeDefs[ joints[ i ] ].isBone = true;

			}

		}

		// Meshes can (and should) be reused by multiple nodes in a glTF asset. To
		// avoid having more than one Mesh with the same name, count
		// references and rename instances below.
		//
		// Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
		for ( var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {

			var nodeDef = nodeDefs[ nodeIndex ];

			if ( nodeDef.mesh !== undefined ) {

				if ( meshReferences[ nodeDef.mesh ] === undefined ) {

					meshReferences[ nodeDef.mesh ] = meshUses[ nodeDef.mesh ] = 0;

				}

				meshReferences[ nodeDef.mesh ] ++;

				// Nothing in the mesh definition indicates whether it is
				// a SkinnedMesh or Mesh. Use the node's mesh reference
				// to mark SkinnedMesh if node has skin.
				if ( nodeDef.skin !== undefined ) {

					meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;

				}

			}

		}

		this.json.meshReferences = meshReferences;
		this.json.meshUses = meshUses;

	};

	/**
	 * Requests the specified dependency asynchronously, with caching.
	 * @param {string} type
	 * @param {number} index
	 * @return {Promise<Object3D|Material|THREE.Texture|AnimationClip|ArrayBuffer|Object>}
	 */
	GLTFParser.prototype.getDependency = function ( type, index ) {

		var cacheKey = type + ':' + index;
		var dependency = this.cache.get( cacheKey );

		if ( ! dependency ) {

			switch ( type ) {

				case 'scene':
					dependency = this.loadScene( index );
					break;

				case 'node':
					dependency = this.loadNode( index );
					break;

				case 'mesh':
					dependency = this.loadMesh( index );
					break;

				case 'accessor':
					dependency = this.loadAccessor( index );
					break;

				case 'bufferView':
					dependency = this.loadBufferView( index );
					break;

				case 'buffer':
					dependency = this.loadBuffer( index );
					break;

				case 'material':
					dependency = this.loadMaterial( index );
					break;

				case 'texture':
					dependency = this.loadTexture( index );
					break;

				case 'skin':
					dependency = this.loadSkin( index );
					break;

				case 'animation':
					dependency = this.loadAnimation( index );
					break;

				case 'camera':
					dependency = this.loadCamera( index );
					break;

				case 'light':
					dependency = this.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].loadLight( index );
					break;

				default:
					throw new Error( 'Unknown type: ' + type );

			}

			this.cache.add( cacheKey, dependency );

		}

		return dependency;

	};

	/**
	 * Requests all dependencies of the specified type asynchronously, with caching.
	 * @param {string} type
	 * @return {Promise<Array<Object>>}
	 */
	GLTFParser.prototype.getDependencies = function ( type ) {

		var dependencies = this.cache.get( type );

		if ( ! dependencies ) {

			var parser = this;
			var defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];

			dependencies = Promise.all( defs.map( function ( def, index ) {

				return parser.getDependency( type, index );

			} ) );

			this.cache.add( type, dependencies );

		}

		return dependencies;

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
	 * @param {number} bufferIndex
	 * @return {Promise<ArrayBuffer>}
	 */
	GLTFParser.prototype.loadBuffer = function ( bufferIndex ) {

		var bufferDef = this.json.buffers[ bufferIndex ];
		var loader = this.fileLoader;

		if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {

			throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );

		}

		// If present, GLB container is required to be the first buffer.
		if ( bufferDef.uri === undefined && bufferIndex === 0 ) {

			return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );

		}

		var options = this.options;

		return new Promise( function ( resolve, reject ) {

			loader.load( resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {

				reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );

			} );

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
	 * @param {number} bufferViewIndex
	 * @return {Promise<ArrayBuffer>}
	 */
	GLTFParser.prototype.loadBufferView = function ( bufferViewIndex ) {

		var bufferViewDef = this.json.bufferViews[ bufferViewIndex ];

		return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {

			var byteLength = bufferViewDef.byteLength || 0;
			var byteOffset = bufferViewDef.byteOffset || 0;
			return buffer.slice( byteOffset, byteOffset + byteLength );

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
	 * @param {number} accessorIndex
	 * @return {Promise<BufferAttribute|InterleavedBufferAttribute>}
	 */
	GLTFParser.prototype.loadAccessor = function ( accessorIndex ) {

		var parser = this;
		var json = this.json;

		var accessorDef = this.json.accessors[ accessorIndex ];

		if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {

			// Ignore empty accessors, which may be used to declare runtime
			// information about attributes coming from another source (e.g. Draco
			// compression extension).
			return Promise.resolve( null );

		}

		var pendingBufferViews = [];

		if ( accessorDef.bufferView !== undefined ) {

			pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );

		} else {

			pendingBufferViews.push( null );

		}

		if ( accessorDef.sparse !== undefined ) {

			pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) );
			pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );

		}

		return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {

			var bufferView = bufferViews[ 0 ];

			var itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
			var TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];

			// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
			var elementBytes = TypedArray.BYTES_PER_ELEMENT;
			var itemBytes = elementBytes * itemSize;
			var byteOffset = accessorDef.byteOffset || 0;
			var byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined;
			var normalized = accessorDef.normalized === true;
			var array, bufferAttribute;

			// The buffer is not interleaved if the stride is the item size in bytes.
			if ( byteStride && byteStride !== itemBytes ) {

				// Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer
				// This makes sure that IBA.count reflects accessor.count properly
				var ibSlice = Math.floor( byteOffset / byteStride );
				var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count;
				var ib = parser.cache.get( ibCacheKey );

				if ( ! ib ) {

					array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes );

					// Integer parameters to IB/IBA are in array elements, not bytes.
					ib = new InterleavedBuffer( array, byteStride / elementBytes );

					parser.cache.add( ibCacheKey, ib );

				}

				bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized );

			} else {

				if ( bufferView === null ) {

					array = new TypedArray( accessorDef.count * itemSize );

				} else {

					array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );

				}

				bufferAttribute = new BufferAttribute( array, itemSize, normalized );

			}

			// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
			if ( accessorDef.sparse !== undefined ) {

				var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
				var TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];

				var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
				var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;

				var sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices );
				var sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );

				if ( bufferView !== null ) {

					// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
					bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized );

				}

				for ( var i = 0, il = sparseIndices.length; i < il; i ++ ) {

					var index = sparseIndices[ i ];

					bufferAttribute.setX( index, sparseValues[ i * itemSize ] );
					if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] );
					if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] );
					if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] );
					if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' );

				}

			}

			return bufferAttribute;

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
	 * @param {number} textureIndex
	 * @return {Promise<THREE.Texture>}
	 */
	GLTFParser.prototype.loadTexture = function ( textureIndex ) {

		var parser = this;
		var json = this.json;
		var options = this.options;
		var textureLoader = this.textureLoader;

		var URL = self.URL || self.webkitURL;

		var textureDef = json.textures[ textureIndex ];

		var textureExtensions = textureDef.extensions || {};

		var source;

		if ( textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] ) {

			source = json.images[ textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].source ];

		} else {

			source = json.images[ textureDef.source ];

		}

		var sourceURI = source.uri;
		var isObjectURL = false;

		if ( source.bufferView !== undefined ) {

			// Load binary image data from bufferView, if provided.

			sourceURI = parser.getDependency( 'bufferView', source.bufferView ).then( function ( bufferView ) {

				isObjectURL = true;
				var blob = new Blob( [ bufferView ], { type: source.mimeType } );
				sourceURI = URL.createObjectURL( blob );
				return sourceURI;

			} );

		}

		return Promise.resolve( sourceURI ).then( function ( sourceURI ) {

			// Load Texture resource.

			var loader = options.manager.getHandler( sourceURI );

			if ( ! loader ) {

				loader = textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ]
					? parser.extensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].ddsLoader
					: textureLoader;

			}

			return new Promise( function ( resolve, reject ) {

				loader.load( resolveURL( sourceURI, options.path ), resolve, undefined, reject );

			} );

		} ).then( function ( texture ) {

			// Clean up resources and configure Texture.

			if ( isObjectURL === true ) {

				URL.revokeObjectURL( sourceURI );

			}

			texture.flipY = false;

			if ( textureDef.name ) texture.name = textureDef.name;

			// Ignore unknown mime types, like DDS files.
			if ( source.mimeType in MIME_TYPE_FORMATS ) {

				texture.format = MIME_TYPE_FORMATS[ source.mimeType ];

			}

			var samplers = json.samplers || {};
			var sampler = samplers[ textureDef.sampler ] || {};

			texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter;
			texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter;
			texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping;
			texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping;

			return texture;

		} );

	};

	/**
	 * Asynchronously assigns a texture to the given material parameters.
	 * @param {Object} materialParams
	 * @param {string} mapName
	 * @param {Object} mapDef
	 * @return {Promise}
	 */
	GLTFParser.prototype.assignTexture = function ( materialParams, mapName, mapDef ) {

		var parser = this;

		return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) {

			if ( ! texture.isCompressedTexture ) {

				switch ( mapName ) {

					case 'aoMap':
					case 'emissiveMap':
					case 'metalnessMap':
					case 'normalMap':
					case 'roughnessMap':
						texture.format = RGBFormat;
						break;

				}

			}

			// Materials sample aoMap from UV set 1 and other maps from UV set 0 - this can't be configured
			// However, we will copy UV set 0 to UV set 1 on demand for aoMap
			if ( mapDef.texCoord !== undefined && mapDef.texCoord != 0 && ! ( mapName === 'aoMap' && mapDef.texCoord == 1 ) ) {

				console.warn( 'THREE.GLTFLoader: Custom UV set ' + mapDef.texCoord + ' for texture ' + mapName + ' not yet supported.' );

			}

			if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) {

				var transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined;

				if ( transform ) {

					texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform );

				}

			}

			materialParams[ mapName ] = texture;

		} );

	};

	/**
	 * Assigns final material to a Mesh, Line, or Points instance. The instance
	 * already has a material (generated from the glTF material options alone)
	 * but reuse of the same glTF material may require multiple threejs materials
	 * to accomodate different primitive types, defines, etc. New materials will
	 * be created if necessary, and reused from a cache.
	 * @param  {Object3D} mesh Mesh, Line, or Points instance.
	 */
	GLTFParser.prototype.assignFinalMaterial = function ( mesh ) {

		var geometry = mesh.geometry;
		var material = mesh.material;

		var useVertexTangents = geometry.attributes.tangent !== undefined;
		var useVertexColors = geometry.attributes.color !== undefined;
		var useFlatShading = geometry.attributes.normal === undefined;
		var useSkinning = mesh.isSkinnedMesh === true;
		var useMorphTargets = Object.keys( geometry.morphAttributes ).length > 0;
		var useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined;

		if ( mesh.isPoints ) {

			var cacheKey = 'PointsMaterial:' + material.uuid;

			var pointsMaterial = this.cache.get( cacheKey );

			if ( ! pointsMaterial ) {

				pointsMaterial = new PointsMaterial();
				Material.prototype.copy.call( pointsMaterial, material );
				pointsMaterial.color.copy( material.color );
				pointsMaterial.map = material.map;
				pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px

				this.cache.add( cacheKey, pointsMaterial );

			}

			material = pointsMaterial;

		} else if ( mesh.isLine ) {

			var cacheKey = 'LineBasicMaterial:' + material.uuid;

			var lineMaterial = this.cache.get( cacheKey );

			if ( ! lineMaterial ) {

				lineMaterial = new LineBasicMaterial();
				Material.prototype.copy.call( lineMaterial, material );
				lineMaterial.color.copy( material.color );

				this.cache.add( cacheKey, lineMaterial );

			}

			material = lineMaterial;

		}

		// Clone the material if it will be modified
		if ( useVertexTangents || useVertexColors || useFlatShading || useSkinning || useMorphTargets ) {

			var cacheKey = 'ClonedMaterial:' + material.uuid + ':';

			if ( material.isGLTFSpecularGlossinessMaterial ) cacheKey += 'specular-glossiness:';
			if ( useSkinning ) cacheKey += 'skinning:';
			if ( useVertexTangents ) cacheKey += 'vertex-tangents:';
			if ( useVertexColors ) cacheKey += 'vertex-colors:';
			if ( useFlatShading ) cacheKey += 'flat-shading:';
			if ( useMorphTargets ) cacheKey += 'morph-targets:';
			if ( useMorphNormals ) cacheKey += 'morph-normals:';

			var cachedMaterial = this.cache.get( cacheKey );

			if ( ! cachedMaterial ) {

				cachedMaterial = material.clone();

				if ( useSkinning ) cachedMaterial.skinning = true;
				if ( useVertexTangents ) cachedMaterial.vertexTangents = true;
				if ( useVertexColors ) cachedMaterial.vertexColors = true;
				if ( useFlatShading ) cachedMaterial.flatShading = true;
				if ( useMorphTargets ) cachedMaterial.morphTargets = true;
				if ( useMorphNormals ) cachedMaterial.morphNormals = true;

				this.cache.add( cacheKey, cachedMaterial );

			}

			material = cachedMaterial;

		}

		// workarounds for mesh and geometry

		if ( material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined ) {

			geometry.setAttribute( 'uv2', new BufferAttribute( geometry.attributes.uv.array, 2 ) );

		}

		// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
		if ( material.normalScale && ! useVertexTangents ) {

			material.normalScale.y = - material.normalScale.y;

		}

		if ( material.clearcoatNormalScale && ! useVertexTangents ) {

			material.clearcoatNormalScale.y = - material.clearcoatNormalScale.y;

		}

		mesh.material = material;

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
	 * @param {number} materialIndex
	 * @return {Promise<Material>}
	 */
	GLTFParser.prototype.loadMaterial = function ( materialIndex ) {

		var parser = this;
		var json = this.json;
		var extensions = this.extensions;
		var materialDef = json.materials[ materialIndex ];

		var materialType;
		var materialParams = {};
		var materialExtensions = materialDef.extensions || {};

		var pending = [];

		if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] ) {

			var sgExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ];
			materialType = sgExtension.getMaterialType();
			pending.push( sgExtension.extendParams( materialParams, materialDef, parser ) );

		} else if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) {

			var kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ];
			materialType = kmuExtension.getMaterialType();
			pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) );

		} else {

			// Specification:
			// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material

			materialType = MeshStandardMaterial;

			var metallicRoughness = materialDef.pbrMetallicRoughness || {};

			materialParams.color = new Color( 1.0, 1.0, 1.0 );
			materialParams.opacity = 1.0;

			if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {

				var array = metallicRoughness.baseColorFactor;

				materialParams.color.fromArray( array );
				materialParams.opacity = array[ 3 ];

			}

			if ( metallicRoughness.baseColorTexture !== undefined ) {

				pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) );

			}

			materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
			materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;

			if ( metallicRoughness.metallicRoughnessTexture !== undefined ) {

				pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) );
				pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) );

			}

		}

		if ( materialDef.doubleSided === true ) {

			materialParams.side = DoubleSide;

		}

		var alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;

		if ( alphaMode === ALPHA_MODES.BLEND ) {

			materialParams.transparent = true;

			// See: https://github.com/mrdoob/three.js/issues/17706
			materialParams.depthWrite = false;

		} else {

			materialParams.transparent = false;

			if ( alphaMode === ALPHA_MODES.MASK ) {

				materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;

			}

		}

		if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) {

			pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) );

			materialParams.normalScale = new Vector2( 1, 1 );

			if ( materialDef.normalTexture.scale !== undefined ) {

				materialParams.normalScale.set( materialDef.normalTexture.scale, materialDef.normalTexture.scale );

			}

		}

		if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) {

			pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) );

			if ( materialDef.occlusionTexture.strength !== undefined ) {

				materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;

			}

		}

		if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) {

			materialParams.emissive = new Color().fromArray( materialDef.emissiveFactor );

		}

		if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) {

			pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture ) );

		}

		if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_CLEARCOAT ] ) {

			var clearcoatExtension = extensions[ EXTENSIONS.KHR_MATERIALS_CLEARCOAT ];
			materialType = clearcoatExtension.getMaterialType();
			pending.push( clearcoatExtension.extendParams( materialParams, { extensions: materialExtensions }, parser ) );

		}

		return Promise.all( pending ).then( function () {

			var material;

			if ( materialType === GLTFMeshStandardSGMaterial ) {

				material = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].createMaterial( materialParams );

			} else {

				material = new materialType( materialParams );

			}

			if ( materialDef.name ) material.name = materialDef.name;

			// baseColorTexture, emissiveTexture, and specularGlossinessTexture use sRGB encoding.
			if ( material.map ) material.map.encoding = sRGBEncoding;
			if ( material.emissiveMap ) material.emissiveMap.encoding = sRGBEncoding;

			assignExtrasToUserData( material, materialDef );

			if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef );

			return material;

		} );

	};

	/**
	 * @param {BufferGeometry} geometry
	 * @param {GLTF.Primitive} primitiveDef
	 * @param {GLTFParser} parser
	 */
	function computeBounds( geometry, primitiveDef, parser ) {

		var attributes = primitiveDef.attributes;

		var box = new Box3();

		if ( attributes.POSITION !== undefined ) {

			var accessor = parser.json.accessors[ attributes.POSITION ];

			var min = accessor.min;
			var max = accessor.max;

			// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.

			if ( min !== undefined && max !== undefined ) {

				box.set(
					new Vector3( min[ 0 ], min[ 1 ], min[ 2 ] ),
					new Vector3( max[ 0 ], max[ 1 ], max[ 2 ] ) );

			} else {

				console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );

				return;

			}

		} else {

			return;

		}

		var targets = primitiveDef.targets;

		if ( targets !== undefined ) {

			var maxDisplacement = new Vector3();
			var vector = new Vector3();

			for ( var i = 0, il = targets.length; i < il; i ++ ) {

				var target = targets[ i ];

				if ( target.POSITION !== undefined ) {

					var accessor = parser.json.accessors[ target.POSITION ];
					var min = accessor.min;
					var max = accessor.max;

					// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.

					if ( min !== undefined && max !== undefined ) {

						// we need to get max of absolute components because target weight is [-1,1]
						vector.setX( Math.max( Math.abs( min[ 0 ] ), Math.abs( max[ 0 ] ) ) );
						vector.setY( Math.max( Math.abs( min[ 1 ] ), Math.abs( max[ 1 ] ) ) );
						vector.setZ( Math.max( Math.abs( min[ 2 ] ), Math.abs( max[ 2 ] ) ) );

						// Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative
						// to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets
						// are used to implement key-frame animations and as such only two are active at a time - this results in very large
						// boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size.
						maxDisplacement.max( vector );

					} else {

						console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );

					}

				}

			}

			// As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets.
			box.expandByVector( maxDisplacement );

		}

		geometry.boundingBox = box;

		var sphere = new Sphere();

		box.getCenter( sphere.center );
		sphere.radius = box.min.distanceTo( box.max ) / 2;

		geometry.boundingSphere = sphere;

	}

	/**
	 * @param {BufferGeometry} geometry
	 * @param {GLTF.Primitive} primitiveDef
	 * @param {GLTFParser} parser
	 * @return {Promise<BufferGeometry>}
	 */
	function addPrimitiveAttributes( geometry, primitiveDef, parser ) {

		var attributes = primitiveDef.attributes;

		var pending = [];

		function assignAttributeAccessor( accessorIndex, attributeName ) {

			return parser.getDependency( 'accessor', accessorIndex )
				.then( function ( accessor ) {

					geometry.setAttribute( attributeName, accessor );

				} );

		}

		for ( var gltfAttributeName in attributes ) {

			var threeAttributeName = ATTRIBUTES[ gltfAttributeName ] || gltfAttributeName.toLowerCase();

			// Skip attributes already provided by e.g. Draco extension.
			if ( threeAttributeName in geometry.attributes ) continue;

			pending.push( assignAttributeAccessor( attributes[ gltfAttributeName ], threeAttributeName ) );

		}

		if ( primitiveDef.indices !== undefined && ! geometry.index ) {

			var accessor = parser.getDependency( 'accessor', primitiveDef.indices ).then( function ( accessor ) {

				geometry.setIndex( accessor );

			} );

			pending.push( accessor );

		}

		assignExtrasToUserData( geometry, primitiveDef );

		computeBounds( geometry, primitiveDef, parser );

		return Promise.all( pending ).then( function () {

			return primitiveDef.targets !== undefined
				? addMorphTargets( geometry, primitiveDef.targets, parser )
				: geometry;

		} );

	}

	/**
	 * @param {BufferGeometry} geometry
	 * @param {Number} drawMode
	 * @return {BufferGeometry}
	 */
	function toTrianglesDrawMode( geometry, drawMode ) {

		var index = geometry.getIndex();

		// generate index if not present

		if ( index === null ) {

			var indices = [];

			var position = geometry.getAttribute( 'position' );

			if ( position !== undefined ) {

				for ( var i = 0; i < position.count; i ++ ) {

					indices.push( i );

				}

				geometry.setIndex( indices );
				index = geometry.getIndex();

			} else {

				console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' );
				return geometry;

			}

		}

		//

		var numberOfTriangles = index.count - 2;
		var newIndices = [];

		if ( drawMode === TriangleFanDrawMode ) {

			// gl.TRIANGLE_FAN

			for ( var i = 1; i <= numberOfTriangles; i ++ ) {

				newIndices.push( index.getX( 0 ) );
				newIndices.push( index.getX( i ) );
				newIndices.push( index.getX( i + 1 ) );

			}

		} else {

			// gl.TRIANGLE_STRIP

			for ( var i = 0; i < numberOfTriangles; i ++ ) {

				if ( i % 2 === 0 ) {

					newIndices.push( index.getX( i ) );
					newIndices.push( index.getX( i + 1 ) );
					newIndices.push( index.getX( i + 2 ) );


				} else {

					newIndices.push( index.getX( i + 2 ) );
					newIndices.push( index.getX( i + 1 ) );
					newIndices.push( index.getX( i ) );

				}

			}

		}

		if ( ( newIndices.length / 3 ) !== numberOfTriangles ) {

			console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' );

		}

		// build final geometry

		var newGeometry = geometry.clone();
		newGeometry.setIndex( newIndices );

		return newGeometry;

	}

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
	 *
	 * Creates BufferGeometries from primitives.
	 *
	 * @param {Array<GLTF.Primitive>} primitives
	 * @return {Promise<Array<BufferGeometry>>}
	 */
	GLTFParser.prototype.loadGeometries = function ( primitives ) {

		var parser = this;
		var extensions = this.extensions;
		var cache = this.primitiveCache;

		function createDracoPrimitive( primitive ) {

			return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]
				.decodePrimitive( primitive, parser )
				.then( function ( geometry ) {

					return addPrimitiveAttributes( geometry, primitive, parser );

				} );

		}

		var pending = [];

		for ( var i = 0, il = primitives.length; i < il; i ++ ) {

			var primitive = primitives[ i ];
			var cacheKey = createPrimitiveKey( primitive );

			// See if we've already created this geometry
			var cached = cache[ cacheKey ];

			if ( cached ) {

				// Use the cached geometry if it exists
				pending.push( cached.promise );

			} else {

				var geometryPromise;

				if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) {

					// Use DRACO geometry if available
					geometryPromise = createDracoPrimitive( primitive );

				} else {

					// Otherwise create a new geometry
					geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser );

				}

				// Cache this geometry
				cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise };

				pending.push( geometryPromise );

			}

		}

		return Promise.all( pending );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
	 * @param {number} meshIndex
	 * @return {Promise<Group|Mesh|SkinnedMesh>}
	 */
	GLTFParser.prototype.loadMesh = function ( meshIndex ) {

		var parser = this;
		var json = this.json;

		var meshDef = json.meshes[ meshIndex ];
		var primitives = meshDef.primitives;

		var pending = [];

		for ( var i = 0, il = primitives.length; i < il; i ++ ) {

			var material = primitives[ i ].material === undefined
				? createDefaultMaterial( this.cache )
				: this.getDependency( 'material', primitives[ i ].material );

			pending.push( material );

		}

		pending.push( parser.loadGeometries( primitives ) );

		return Promise.all( pending ).then( function ( results ) {

			var materials = results.slice( 0, results.length - 1 );
			var geometries = results[ results.length - 1 ];

			var meshes = [];

			for ( var i = 0, il = geometries.length; i < il; i ++ ) {

				var geometry = geometries[ i ];
				var primitive = primitives[ i ];

				// 1. create Mesh

				var mesh;

				var material = materials[ i ];

				if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
					primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
					primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
					primitive.mode === undefined ) {

					// .isSkinnedMesh isn't in glTF spec. See .markDefs()
					mesh = meshDef.isSkinnedMesh === true
						? new SkinnedMesh( geometry, material )
						: new Mesh( geometry, material );

					if ( mesh.isSkinnedMesh === true && ! mesh.geometry.attributes.skinWeight.normalized ) {

						// we normalize floating point skin weight array to fix malformed assets (see #15319)
						// it's important to skip this for non-float32 data since normalizeSkinWeights assumes non-normalized inputs
						mesh.normalizeSkinWeights();

					}

					if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) {

						mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode );

					} else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) {

						mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode );

					}

				} else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) {

					mesh = new LineSegments( geometry, material );

				} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) {

					mesh = new Line( geometry, material );

				} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) {

					mesh = new LineLoop( geometry, material );

				} else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) {

					mesh = new Points( geometry, material );

				} else {

					throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode );

				}

				if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) {

					updateMorphTargets( mesh, meshDef );

				}

				mesh.name = meshDef.name || ( 'mesh_' + meshIndex );

				if ( geometries.length > 1 ) mesh.name += '_' + i;

				assignExtrasToUserData( mesh, meshDef );

				parser.assignFinalMaterial( mesh );

				meshes.push( mesh );

			}

			if ( meshes.length === 1 ) {

				return meshes[ 0 ];

			}

			var group = new Group();

			for ( var i = 0, il = meshes.length; i < il; i ++ ) {

				group.add( meshes[ i ] );

			}

			return group;

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
	 * @param {number} cameraIndex
	 * @return {Promise<THREE.Camera>}
	 */
	GLTFParser.prototype.loadCamera = function ( cameraIndex ) {

		var camera;
		var cameraDef = this.json.cameras[ cameraIndex ];
		var params = cameraDef[ cameraDef.type ];

		if ( ! params ) {

			console.warn( 'THREE.GLTFLoader: Missing camera parameters.' );
			return;

		}

		if ( cameraDef.type === 'perspective' ) {

			camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 );

		} else if ( cameraDef.type === 'orthographic' ) {

			camera = new OrthographicCamera( params.xmag / - 2, params.xmag / 2, params.ymag / 2, params.ymag / - 2, params.znear, params.zfar );

		}

		if ( cameraDef.name ) camera.name = cameraDef.name;

		assignExtrasToUserData( camera, cameraDef );

		return Promise.resolve( camera );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
	 * @param {number} skinIndex
	 * @return {Promise<Object>}
	 */
	GLTFParser.prototype.loadSkin = function ( skinIndex ) {

		var skinDef = this.json.skins[ skinIndex ];

		var skinEntry = { joints: skinDef.joints };

		if ( skinDef.inverseBindMatrices === undefined ) {

			return Promise.resolve( skinEntry );

		}

		return this.getDependency( 'accessor', skinDef.inverseBindMatrices ).then( function ( accessor ) {

			skinEntry.inverseBindMatrices = accessor;

			return skinEntry;

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
	 * @param {number} animationIndex
	 * @return {Promise<AnimationClip>}
	 */
	GLTFParser.prototype.loadAnimation = function ( animationIndex ) {

		var json = this.json;

		var animationDef = json.animations[ animationIndex ];

		var pendingNodes = [];
		var pendingInputAccessors = [];
		var pendingOutputAccessors = [];
		var pendingSamplers = [];
		var pendingTargets = [];

		for ( var i = 0, il = animationDef.channels.length; i < il; i ++ ) {

			var channel = animationDef.channels[ i ];
			var sampler = animationDef.samplers[ channel.sampler ];
			var target = channel.target;
			var name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated.
			var input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input;
			var output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output;

			pendingNodes.push( this.getDependency( 'node', name ) );
			pendingInputAccessors.push( this.getDependency( 'accessor', input ) );
			pendingOutputAccessors.push( this.getDependency( 'accessor', output ) );
			pendingSamplers.push( sampler );
			pendingTargets.push( target );

		}

		return Promise.all( [

			Promise.all( pendingNodes ),
			Promise.all( pendingInputAccessors ),
			Promise.all( pendingOutputAccessors ),
			Promise.all( pendingSamplers ),
			Promise.all( pendingTargets )

		] ).then( function ( dependencies ) {

			var nodes = dependencies[ 0 ];
			var inputAccessors = dependencies[ 1 ];
			var outputAccessors = dependencies[ 2 ];
			var samplers = dependencies[ 3 ];
			var targets = dependencies[ 4 ];

			var tracks = [];

			for ( var i = 0, il = nodes.length; i < il; i ++ ) {

				var node = nodes[ i ];
				var inputAccessor = inputAccessors[ i ];
				var outputAccessor = outputAccessors[ i ];
				var sampler = samplers[ i ];
				var target = targets[ i ];

				if ( node === undefined ) continue;

				node.updateMatrix();
				node.matrixAutoUpdate = true;

				var TypedKeyframeTrack;

				switch ( PATH_PROPERTIES[ target.path ] ) {

					case PATH_PROPERTIES.weights:

						TypedKeyframeTrack = NumberKeyframeTrack;
						break;

					case PATH_PROPERTIES.rotation:

						TypedKeyframeTrack = QuaternionKeyframeTrack;
						break;

					case PATH_PROPERTIES.position:
					case PATH_PROPERTIES.scale:
					default:

						TypedKeyframeTrack = VectorKeyframeTrack;
						break;

				}

				var targetName = node.name ? node.name : node.uuid;

				var interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear;

				var targetNames = [];

				if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) {

					// Node may be a Group (glTF mesh with several primitives) or a Mesh.
					node.traverse( function ( object ) {

						if ( object.isMesh === true && object.morphTargetInfluences ) {

							targetNames.push( object.name ? object.name : object.uuid );

						}

					} );

				} else {

					targetNames.push( targetName );

				}

				var outputArray = outputAccessor.array;

				if ( outputAccessor.normalized ) {

					var scale;

					if ( outputArray.constructor === Int8Array ) {

						scale = 1 / 127;

					} else if ( outputArray.constructor === Uint8Array ) {

						scale = 1 / 255;

					} else if ( outputArray.constructor == Int16Array ) {

						scale = 1 / 32767;

					} else if ( outputArray.constructor === Uint16Array ) {

						scale = 1 / 65535;

					} else {

						throw new Error( 'THREE.GLTFLoader: Unsupported output accessor component type.' );

					}

					var scaled = new Float32Array( outputArray.length );

					for ( var j = 0, jl = outputArray.length; j < jl; j ++ ) {

						scaled[ j ] = outputArray[ j ] * scale;

					}

					outputArray = scaled;

				}

				for ( var j = 0, jl = targetNames.length; j < jl; j ++ ) {

					var track = new TypedKeyframeTrack(
						targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ],
						inputAccessor.array,
						outputArray,
						interpolation
					);

					// Override interpolation with custom factory method.
					if ( sampler.interpolation === 'CUBICSPLINE' ) {

						track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) {

							// A CUBICSPLINE keyframe in glTF has three output values for each input value,
							// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
							// must be divided by three to get the interpolant's sampleSize argument.

							return new GLTFCubicSplineInterpolant( this.times, this.values, this.getValueSize() / 3, result );

						};

						// Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants.
						track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;

					}

					tracks.push( track );

				}

			}

			var name = animationDef.name ? animationDef.name : 'animation_' + animationIndex;

			return new AnimationClip( name, undefined, tracks );

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
	 * @param {number} nodeIndex
	 * @return {Promise<Object3D>}
	 */
	GLTFParser.prototype.loadNode = function ( nodeIndex ) {

		var json = this.json;
		var extensions = this.extensions;
		var parser = this;

		var meshReferences = json.meshReferences;
		var meshUses = json.meshUses;

		var nodeDef = json.nodes[ nodeIndex ];

		return ( function () {

			var pending = [];

			if ( nodeDef.mesh !== undefined ) {

				pending.push( parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) {

					var node;

					if ( meshReferences[ nodeDef.mesh ] > 1 ) {

						var instanceNum = meshUses[ nodeDef.mesh ] ++;

						node = mesh.clone();
						node.name += '_instance_' + instanceNum;

					} else {

						node = mesh;

					}

					// if weights are provided on the node, override weights on the mesh.
					if ( nodeDef.weights !== undefined ) {

						node.traverse( function ( o ) {

							if ( ! o.isMesh ) return;

							for ( var i = 0, il = nodeDef.weights.length; i < il; i ++ ) {

								o.morphTargetInfluences[ i ] = nodeDef.weights[ i ];

							}

						} );

					}

					return node;

				} ) );

			}

			if ( nodeDef.camera !== undefined ) {

				pending.push( parser.getDependency( 'camera', nodeDef.camera ) );

			}

			if ( nodeDef.extensions
				&& nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ]
				&& nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].light !== undefined ) {

				pending.push( parser.getDependency( 'light', nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].light ) );

			}

			return Promise.all( pending );

		}() ).then( function ( objects ) {

			var node;

			// .isBone isn't in glTF spec. See .markDefs
			if ( nodeDef.isBone === true ) {

				node = new Bone();

			} else if ( objects.length > 1 ) {

				node = new Group();

			} else if ( objects.length === 1 ) {

				node = objects[ 0 ];

			} else {

				node = new Object3D();

			}

			if ( node !== objects[ 0 ] ) {

				for ( var i = 0, il = objects.length; i < il; i ++ ) {

					node.add( objects[ i ] );

				}

			}

			if ( nodeDef.name ) {

				node.userData.name = nodeDef.name;
				node.name = PropertyBinding.sanitizeNodeName( nodeDef.name );

			}

			assignExtrasToUserData( node, nodeDef );

			if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef );

			if ( nodeDef.matrix !== undefined ) {

				var matrix = new Matrix4();
				matrix.fromArray( nodeDef.matrix );
				node.applyMatrix4( matrix );

			} else {

				if ( nodeDef.translation !== undefined ) {

					node.position.fromArray( nodeDef.translation );

				}

				if ( nodeDef.rotation !== undefined ) {

					node.quaternion.fromArray( nodeDef.rotation );

				}

				if ( nodeDef.scale !== undefined ) {

					node.scale.fromArray( nodeDef.scale );

				}

			}

			return node;

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
	 * @param {number} sceneIndex
	 * @return {Promise<Group>}
	 */
	GLTFParser.prototype.loadScene = function () {

		// scene node hierachy builder

		function buildNodeHierachy( nodeId, parentObject, json, parser ) {

			var nodeDef = json.nodes[ nodeId ];

			return parser.getDependency( 'node', nodeId ).then( function ( node ) {

				if ( nodeDef.skin === undefined ) return node;

				// build skeleton here as well

				var skinEntry;

				return parser.getDependency( 'skin', nodeDef.skin ).then( function ( skin ) {

					skinEntry = skin;

					var pendingJoints = [];

					for ( var i = 0, il = skinEntry.joints.length; i < il; i ++ ) {

						pendingJoints.push( parser.getDependency( 'node', skinEntry.joints[ i ] ) );

					}

					return Promise.all( pendingJoints );

				} ).then( function ( jointNodes ) {

					node.traverse( function ( mesh ) {

						if ( ! mesh.isMesh ) return;

						var bones = [];
						var boneInverses = [];

						for ( var j = 0, jl = jointNodes.length; j < jl; j ++ ) {

							var jointNode = jointNodes[ j ];

							if ( jointNode ) {

								bones.push( jointNode );

								var mat = new Matrix4();

								if ( skinEntry.inverseBindMatrices !== undefined ) {

									mat.fromArray( skinEntry.inverseBindMatrices.array, j * 16 );

								}

								boneInverses.push( mat );

							} else {

								console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[ j ] );

							}

						}

						mesh.bind( new Skeleton( bones, boneInverses ), mesh.matrixWorld );

					} );

					return node;

				} );

			} ).then( function ( node ) {

				// build node hierachy

				parentObject.add( node );

				var pending = [];

				if ( nodeDef.children ) {

					var children = nodeDef.children;

					for ( var i = 0, il = children.length; i < il; i ++ ) {

						var child = children[ i ];
						pending.push( buildNodeHierachy( child, node, json, parser ) );

					}

				}

				return Promise.all( pending );

			} );

		}

		return function loadScene( sceneIndex ) {

			var json = this.json;
			var extensions = this.extensions;
			var sceneDef = this.json.scenes[ sceneIndex ];
			var parser = this;

			// Loader returns Group, not Scene.
			// See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172
			var scene = new Group();
			if ( sceneDef.name ) scene.name = sceneDef.name;

			assignExtrasToUserData( scene, sceneDef );

			if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef );

			var nodeIds = sceneDef.nodes || [];

			var pending = [];

			for ( var i = 0, il = nodeIds.length; i < il; i ++ ) {

				pending.push( buildNodeHierachy( nodeIds[ i ], scene, json, parser ) );

			}

			return Promise.all( pending ).then( function () {

				return scene;

			} );

		};

	}();

	return GLTFLoader;

} )()
Example #16
Source File: index.js    From THREE.BlurredLine with MIT License 4 votes vote down vote up
constructor(parameters) {
    super();

    if (!parameters) {
      parameters = {
        depthTest: false,
        side: DoubleSide,
        transparent: true,
      };
    } else {
      if (parameters.depthTest === undefined) parameters.depthTest = false;
      if (parameters.side === undefined) parameters.side = DoubleSide;
      if (parameters.transparent === undefined) parameters.transparent = true;
    }

    this.uniforms = {
      materialColor: { value: new Color(0xffffff) },
      opacity: { value: 1.0 },
    };

    this.color = new Color();

    this.vertexShader = `
        precision mediump float;
        precision mediump int;

        uniform mat4 modelViewMatrix; // optional
        uniform mat4 projectionMatrix; // optional

        attribute vec3 position;
        attribute vec4 color;

        uniform vec3 materialColor;
        uniform float opacity;

        // varying vec3 vPosition;
        varying vec4 vColor;

        void main()	{

          // vPosition = position;
          vColor = color * vec4( materialColor, opacity );

          gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );

        }
      `;

    this.fragmentShader = `
        precision mediump float;
        precision mediump int;

        // uniform float time;
        // uniform float color;
        // uniform float opacity;

        // varying vec3 vPosition;
        varying vec4 vColor;

        void main()	{

          vec4 c = vColor;
          // c.a *= opacity;
          // color.r += sin( vPosition.x * 10.0 + time ) * 0.5;

          gl_FragColor = c;

        }
      `;

    this.type = 'BlurredLineMaterial';

    Object.defineProperties(this, {
      color: {
        enumerable: true,
        get: function () {
          return this.uniforms.materialColor.value;
        },
        set: function (value) {
          this.uniforms.materialColor.value = value;
        },
      },
      opacity: {
        enumerable: true,
        get: function () {
          return this.uniforms.opacity.value;
        },
        set: function (value) {
          this.uniforms.opacity.value = value;
        },
      },
    });

    this.setValues(parameters);
  }
Example #17
Source File: ColladaLoader.js    From Computer-Graphics with MIT License 4 votes vote down vote up
parse( text, path ) {

		function getElementsByTagName( xml, name ) {

			// Non recursive xml.getElementsByTagName() ...

			const array = [];
			const childNodes = xml.childNodes;

			for ( let i = 0, l = childNodes.length; i < l; i ++ ) {

				const child = childNodes[ i ];

				if ( child.nodeName === name ) {

					array.push( child );

				}

			}

			return array;

		}

		function parseStrings( text ) {

			if ( text.length === 0 ) return [];

			const parts = text.trim().split( /\s+/ );
			const array = new Array( parts.length );

			for ( let i = 0, l = parts.length; i < l; i ++ ) {

				array[ i ] = parts[ i ];

			}

			return array;

		}

		function parseFloats( text ) {

			if ( text.length === 0 ) return [];

			const parts = text.trim().split( /\s+/ );
			const array = new Array( parts.length );

			for ( let i = 0, l = parts.length; i < l; i ++ ) {

				array[ i ] = parseFloat( parts[ i ] );

			}

			return array;

		}

		function parseInts( text ) {

			if ( text.length === 0 ) return [];

			const parts = text.trim().split( /\s+/ );
			const array = new Array( parts.length );

			for ( let i = 0, l = parts.length; i < l; i ++ ) {

				array[ i ] = parseInt( parts[ i ] );

			}

			return array;

		}

		function parseId( text ) {

			return text.substring( 1 );

		}

		function generateId() {

			return 'three_default_' + ( count ++ );

		}

		function isEmpty( object ) {

			return Object.keys( object ).length === 0;

		}

		// asset

		function parseAsset( xml ) {

			return {
				unit: parseAssetUnit( getElementsByTagName( xml, 'unit' )[ 0 ] ),
				upAxis: parseAssetUpAxis( getElementsByTagName( xml, 'up_axis' )[ 0 ] )
			};

		}

		function parseAssetUnit( xml ) {

			if ( ( xml !== undefined ) && ( xml.hasAttribute( 'meter' ) === true ) ) {

				return parseFloat( xml.getAttribute( 'meter' ) );

			} else {

				return 1; // default 1 meter

			}

		}

		function parseAssetUpAxis( xml ) {

			return xml !== undefined ? xml.textContent : 'Y_UP';

		}

		// library

		function parseLibrary( xml, libraryName, nodeName, parser ) {

			const library = getElementsByTagName( xml, libraryName )[ 0 ];

			if ( library !== undefined ) {

				const elements = getElementsByTagName( library, nodeName );

				for ( let i = 0; i < elements.length; i ++ ) {

					parser( elements[ i ] );

				}

			}

		}

		function buildLibrary( data, builder ) {

			for ( const name in data ) {

				const object = data[ name ];
				object.build = builder( data[ name ] );

			}

		}

		// get

		function getBuild( data, builder ) {

			if ( data.build !== undefined ) return data.build;

			data.build = builder( data );

			return data.build;

		}

		// animation

		function parseAnimation( xml ) {

			const data = {
				sources: {},
				samplers: {},
				channels: {}
			};

			let hasChildren = false;

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				let id;

				switch ( child.nodeName ) {

					case 'source':
						id = child.getAttribute( 'id' );
						data.sources[ id ] = parseSource( child );
						break;

					case 'sampler':
						id = child.getAttribute( 'id' );
						data.samplers[ id ] = parseAnimationSampler( child );
						break;

					case 'channel':
						id = child.getAttribute( 'target' );
						data.channels[ id ] = parseAnimationChannel( child );
						break;

					case 'animation':
						// hierarchy of related animations
						parseAnimation( child );
						hasChildren = true;
						break;

					default:
						console.log( child );

				}

			}

			if ( hasChildren === false ) {

				// since 'id' attributes can be optional, it's necessary to generate a UUID for unqiue assignment

				library.animations[ xml.getAttribute( 'id' ) || MathUtils.generateUUID() ] = data;

			}

		}

		function parseAnimationSampler( xml ) {

			const data = {
				inputs: {},
			};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'input':
						const id = parseId( child.getAttribute( 'source' ) );
						const semantic = child.getAttribute( 'semantic' );
						data.inputs[ semantic ] = id;
						break;

				}

			}

			return data;

		}

		function parseAnimationChannel( xml ) {

			const data = {};

			const target = xml.getAttribute( 'target' );

			// parsing SID Addressing Syntax

			let parts = target.split( '/' );

			const id = parts.shift();
			let sid = parts.shift();

			// check selection syntax

			const arraySyntax = ( sid.indexOf( '(' ) !== - 1 );
			const memberSyntax = ( sid.indexOf( '.' ) !== - 1 );

			if ( memberSyntax ) {

				//  member selection access

				parts = sid.split( '.' );
				sid = parts.shift();
				data.member = parts.shift();

			} else if ( arraySyntax ) {

				// array-access syntax. can be used to express fields in one-dimensional vectors or two-dimensional matrices.

				const indices = sid.split( '(' );
				sid = indices.shift();

				for ( let i = 0; i < indices.length; i ++ ) {

					indices[ i ] = parseInt( indices[ i ].replace( /\)/, '' ) );

				}

				data.indices = indices;

			}

			data.id = id;
			data.sid = sid;

			data.arraySyntax = arraySyntax;
			data.memberSyntax = memberSyntax;

			data.sampler = parseId( xml.getAttribute( 'source' ) );

			return data;

		}

		function buildAnimation( data ) {

			const tracks = [];

			const channels = data.channels;
			const samplers = data.samplers;
			const sources = data.sources;

			for ( const target in channels ) {

				if ( channels.hasOwnProperty( target ) ) {

					const channel = channels[ target ];
					const sampler = samplers[ channel.sampler ];

					const inputId = sampler.inputs.INPUT;
					const outputId = sampler.inputs.OUTPUT;

					const inputSource = sources[ inputId ];
					const outputSource = sources[ outputId ];

					const animation = buildAnimationChannel( channel, inputSource, outputSource );

					createKeyframeTracks( animation, tracks );

				}

			}

			return tracks;

		}

		function getAnimation( id ) {

			return getBuild( library.animations[ id ], buildAnimation );

		}

		function buildAnimationChannel( channel, inputSource, outputSource ) {

			const node = library.nodes[ channel.id ];
			const object3D = getNode( node.id );

			const transform = node.transforms[ channel.sid ];
			const defaultMatrix = node.matrix.clone().transpose();

			let time, stride;
			let i, il, j, jl;

			const data = {};

			// the collada spec allows the animation of data in various ways.
			// depending on the transform type (matrix, translate, rotate, scale), we execute different logic

			switch ( transform ) {

				case 'matrix':

					for ( i = 0, il = inputSource.array.length; i < il; i ++ ) {

						time = inputSource.array[ i ];
						stride = i * outputSource.stride;

						if ( data[ time ] === undefined ) data[ time ] = {};

						if ( channel.arraySyntax === true ) {

							const value = outputSource.array[ stride ];
							const index = channel.indices[ 0 ] + 4 * channel.indices[ 1 ];

							data[ time ][ index ] = value;

						} else {

							for ( j = 0, jl = outputSource.stride; j < jl; j ++ ) {

								data[ time ][ j ] = outputSource.array[ stride + j ];

							}

						}

					}

					break;

				case 'translate':
					console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
					break;

				case 'rotate':
					console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
					break;

				case 'scale':
					console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
					break;

			}

			const keyframes = prepareAnimationData( data, defaultMatrix );

			const animation = {
				name: object3D.uuid,
				keyframes: keyframes
			};

			return animation;

		}

		function prepareAnimationData( data, defaultMatrix ) {

			const keyframes = [];

			// transfer data into a sortable array

			for ( const time in data ) {

				keyframes.push( { time: parseFloat( time ), value: data[ time ] } );

			}

			// ensure keyframes are sorted by time

			keyframes.sort( ascending );

			// now we clean up all animation data, so we can use them for keyframe tracks

			for ( let i = 0; i < 16; i ++ ) {

				transformAnimationData( keyframes, i, defaultMatrix.elements[ i ] );

			}

			return keyframes;

			// array sort function

			function ascending( a, b ) {

				return a.time - b.time;

			}

		}

		const position = new Vector3();
		const scale = new Vector3();
		const quaternion = new Quaternion();

		function createKeyframeTracks( animation, tracks ) {

			const keyframes = animation.keyframes;
			const name = animation.name;

			const times = [];
			const positionData = [];
			const quaternionData = [];
			const scaleData = [];

			for ( let i = 0, l = keyframes.length; i < l; i ++ ) {

				const keyframe = keyframes[ i ];

				const time = keyframe.time;
				const value = keyframe.value;

				matrix.fromArray( value ).transpose();
				matrix.decompose( position, quaternion, scale );

				times.push( time );
				positionData.push( position.x, position.y, position.z );
				quaternionData.push( quaternion.x, quaternion.y, quaternion.z, quaternion.w );
				scaleData.push( scale.x, scale.y, scale.z );

			}

			if ( positionData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.position', times, positionData ) );
			if ( quaternionData.length > 0 ) tracks.push( new QuaternionKeyframeTrack( name + '.quaternion', times, quaternionData ) );
			if ( scaleData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.scale', times, scaleData ) );

			return tracks;

		}

		function transformAnimationData( keyframes, property, defaultValue ) {

			let keyframe;

			let empty = true;
			let i, l;

			// check, if values of a property are missing in our keyframes

			for ( i = 0, l = keyframes.length; i < l; i ++ ) {

				keyframe = keyframes[ i ];

				if ( keyframe.value[ property ] === undefined ) {

					keyframe.value[ property ] = null; // mark as missing

				} else {

					empty = false;

				}

			}

			if ( empty === true ) {

				// no values at all, so we set a default value

				for ( i = 0, l = keyframes.length; i < l; i ++ ) {

					keyframe = keyframes[ i ];

					keyframe.value[ property ] = defaultValue;

				}

			} else {

				// filling gaps

				createMissingKeyframes( keyframes, property );

			}

		}

		function createMissingKeyframes( keyframes, property ) {

			let prev, next;

			for ( let i = 0, l = keyframes.length; i < l; i ++ ) {

				const keyframe = keyframes[ i ];

				if ( keyframe.value[ property ] === null ) {

					prev = getPrev( keyframes, i, property );
					next = getNext( keyframes, i, property );

					if ( prev === null ) {

						keyframe.value[ property ] = next.value[ property ];
						continue;

					}

					if ( next === null ) {

						keyframe.value[ property ] = prev.value[ property ];
						continue;

					}

					interpolate( keyframe, prev, next, property );

				}

			}

		}

		function getPrev( keyframes, i, property ) {

			while ( i >= 0 ) {

				const keyframe = keyframes[ i ];

				if ( keyframe.value[ property ] !== null ) return keyframe;

				i --;

			}

			return null;

		}

		function getNext( keyframes, i, property ) {

			while ( i < keyframes.length ) {

				const keyframe = keyframes[ i ];

				if ( keyframe.value[ property ] !== null ) return keyframe;

				i ++;

			}

			return null;

		}

		function interpolate( key, prev, next, property ) {

			if ( ( next.time - prev.time ) === 0 ) {

				key.value[ property ] = prev.value[ property ];
				return;

			}

			key.value[ property ] = ( ( key.time - prev.time ) * ( next.value[ property ] - prev.value[ property ] ) / ( next.time - prev.time ) ) + prev.value[ property ];

		}

		// animation clips

		function parseAnimationClip( xml ) {

			const data = {
				name: xml.getAttribute( 'id' ) || 'default',
				start: parseFloat( xml.getAttribute( 'start' ) || 0 ),
				end: parseFloat( xml.getAttribute( 'end' ) || 0 ),
				animations: []
			};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'instance_animation':
						data.animations.push( parseId( child.getAttribute( 'url' ) ) );
						break;

				}

			}

			library.clips[ xml.getAttribute( 'id' ) ] = data;

		}

		function buildAnimationClip( data ) {

			const tracks = [];

			const name = data.name;
			const duration = ( data.end - data.start ) || - 1;
			const animations = data.animations;

			for ( let i = 0, il = animations.length; i < il; i ++ ) {

				const animationTracks = getAnimation( animations[ i ] );

				for ( let j = 0, jl = animationTracks.length; j < jl; j ++ ) {

					tracks.push( animationTracks[ j ] );

				}

			}

			return new AnimationClip( name, duration, tracks );

		}

		function getAnimationClip( id ) {

			return getBuild( library.clips[ id ], buildAnimationClip );

		}

		// controller

		function parseController( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'skin':
						// there is exactly one skin per controller
						data.id = parseId( child.getAttribute( 'source' ) );
						data.skin = parseSkin( child );
						break;

					case 'morph':
						data.id = parseId( child.getAttribute( 'source' ) );
						console.warn( 'THREE.ColladaLoader: Morph target animation not supported yet.' );
						break;

				}

			}

			library.controllers[ xml.getAttribute( 'id' ) ] = data;

		}

		function parseSkin( xml ) {

			const data = {
				sources: {}
			};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'bind_shape_matrix':
						data.bindShapeMatrix = parseFloats( child.textContent );
						break;

					case 'source':
						const id = child.getAttribute( 'id' );
						data.sources[ id ] = parseSource( child );
						break;

					case 'joints':
						data.joints = parseJoints( child );
						break;

					case 'vertex_weights':
						data.vertexWeights = parseVertexWeights( child );
						break;

				}

			}

			return data;

		}

		function parseJoints( xml ) {

			const data = {
				inputs: {}
			};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'input':
						const semantic = child.getAttribute( 'semantic' );
						const id = parseId( child.getAttribute( 'source' ) );
						data.inputs[ semantic ] = id;
						break;

				}

			}

			return data;

		}

		function parseVertexWeights( xml ) {

			const data = {
				inputs: {}
			};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'input':
						const semantic = child.getAttribute( 'semantic' );
						const id = parseId( child.getAttribute( 'source' ) );
						const offset = parseInt( child.getAttribute( 'offset' ) );
						data.inputs[ semantic ] = { id: id, offset: offset };
						break;

					case 'vcount':
						data.vcount = parseInts( child.textContent );
						break;

					case 'v':
						data.v = parseInts( child.textContent );
						break;

				}

			}

			return data;

		}

		function buildController( data ) {

			const build = {
				id: data.id
			};

			const geometry = library.geometries[ build.id ];

			if ( data.skin !== undefined ) {

				build.skin = buildSkin( data.skin );

				// we enhance the 'sources' property of the corresponding geometry with our skin data

				geometry.sources.skinIndices = build.skin.indices;
				geometry.sources.skinWeights = build.skin.weights;

			}

			return build;

		}

		function buildSkin( data ) {

			const BONE_LIMIT = 4;

			const build = {
				joints: [], // this must be an array to preserve the joint order
				indices: {
					array: [],
					stride: BONE_LIMIT
				},
				weights: {
					array: [],
					stride: BONE_LIMIT
				}
			};

			const sources = data.sources;
			const vertexWeights = data.vertexWeights;

			const vcount = vertexWeights.vcount;
			const v = vertexWeights.v;
			const jointOffset = vertexWeights.inputs.JOINT.offset;
			const weightOffset = vertexWeights.inputs.WEIGHT.offset;

			const jointSource = data.sources[ data.joints.inputs.JOINT ];
			const inverseSource = data.sources[ data.joints.inputs.INV_BIND_MATRIX ];

			const weights = sources[ vertexWeights.inputs.WEIGHT.id ].array;
			let stride = 0;

			let i, j, l;

			// procces skin data for each vertex

			for ( i = 0, l = vcount.length; i < l; i ++ ) {

				const jointCount = vcount[ i ]; // this is the amount of joints that affect a single vertex
				const vertexSkinData = [];

				for ( j = 0; j < jointCount; j ++ ) {

					const skinIndex = v[ stride + jointOffset ];
					const weightId = v[ stride + weightOffset ];
					const skinWeight = weights[ weightId ];

					vertexSkinData.push( { index: skinIndex, weight: skinWeight } );

					stride += 2;

				}

				// we sort the joints in descending order based on the weights.
				// this ensures, we only procced the most important joints of the vertex

				vertexSkinData.sort( descending );

				// now we provide for each vertex a set of four index and weight values.
				// the order of the skin data matches the order of vertices

				for ( j = 0; j < BONE_LIMIT; j ++ ) {

					const d = vertexSkinData[ j ];

					if ( d !== undefined ) {

						build.indices.array.push( d.index );
						build.weights.array.push( d.weight );

					} else {

						build.indices.array.push( 0 );
						build.weights.array.push( 0 );

					}

				}

			}

			// setup bind matrix

			if ( data.bindShapeMatrix ) {

				build.bindMatrix = new Matrix4().fromArray( data.bindShapeMatrix ).transpose();

			} else {

				build.bindMatrix = new Matrix4().identity();

			}

			// process bones and inverse bind matrix data

			for ( i = 0, l = jointSource.array.length; i < l; i ++ ) {

				const name = jointSource.array[ i ];
				const boneInverse = new Matrix4().fromArray( inverseSource.array, i * inverseSource.stride ).transpose();

				build.joints.push( { name: name, boneInverse: boneInverse } );

			}

			return build;

			// array sort function

			function descending( a, b ) {

				return b.weight - a.weight;

			}

		}

		function getController( id ) {

			return getBuild( library.controllers[ id ], buildController );

		}

		// image

		function parseImage( xml ) {

			const data = {
				init_from: getElementsByTagName( xml, 'init_from' )[ 0 ].textContent
			};

			library.images[ xml.getAttribute( 'id' ) ] = data;

		}

		function buildImage( data ) {

			if ( data.build !== undefined ) return data.build;

			return data.init_from;

		}

		function getImage( id ) {

			const data = library.images[ id ];

			if ( data !== undefined ) {

				return getBuild( data, buildImage );

			}

			console.warn( 'THREE.ColladaLoader: Couldn\'t find image with ID:', id );

			return null;

		}

		// effect

		function parseEffect( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'profile_COMMON':
						data.profile = parseEffectProfileCOMMON( child );
						break;

				}

			}

			library.effects[ xml.getAttribute( 'id' ) ] = data;

		}

		function parseEffectProfileCOMMON( xml ) {

			const data = {
				surfaces: {},
				samplers: {}
			};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'newparam':
						parseEffectNewparam( child, data );
						break;

					case 'technique':
						data.technique = parseEffectTechnique( child );
						break;

					case 'extra':
						data.extra = parseEffectExtra( child );
						break;

				}

			}

			return data;

		}

		function parseEffectNewparam( xml, data ) {

			const sid = xml.getAttribute( 'sid' );

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'surface':
						data.surfaces[ sid ] = parseEffectSurface( child );
						break;

					case 'sampler2D':
						data.samplers[ sid ] = parseEffectSampler( child );
						break;

				}

			}

		}

		function parseEffectSurface( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'init_from':
						data.init_from = child.textContent;
						break;

				}

			}

			return data;

		}

		function parseEffectSampler( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'source':
						data.source = child.textContent;
						break;

				}

			}

			return data;

		}

		function parseEffectTechnique( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'constant':
					case 'lambert':
					case 'blinn':
					case 'phong':
						data.type = child.nodeName;
						data.parameters = parseEffectParameters( child );
						break;

					case 'extra':
						data.extra = parseEffectExtra( child );
						break;

				}

			}

			return data;

		}

		function parseEffectParameters( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'emission':
					case 'diffuse':
					case 'specular':
					case 'bump':
					case 'ambient':
					case 'shininess':
					case 'transparency':
						data[ child.nodeName ] = parseEffectParameter( child );
						break;
					case 'transparent':
						data[ child.nodeName ] = {
							opaque: child.hasAttribute( 'opaque' ) ? child.getAttribute( 'opaque' ) : 'A_ONE',
							data: parseEffectParameter( child )
						};
						break;

				}

			}

			return data;

		}

		function parseEffectParameter( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'color':
						data[ child.nodeName ] = parseFloats( child.textContent );
						break;

					case 'float':
						data[ child.nodeName ] = parseFloat( child.textContent );
						break;

					case 'texture':
						data[ child.nodeName ] = { id: child.getAttribute( 'texture' ), extra: parseEffectParameterTexture( child ) };
						break;

				}

			}

			return data;

		}

		function parseEffectParameterTexture( xml ) {

			const data = {
				technique: {}
			};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'extra':
						parseEffectParameterTextureExtra( child, data );
						break;

				}

			}

			return data;

		}

		function parseEffectParameterTextureExtra( xml, data ) {

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'technique':
						parseEffectParameterTextureExtraTechnique( child, data );
						break;

				}

			}

		}

		function parseEffectParameterTextureExtraTechnique( xml, data ) {

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'repeatU':
					case 'repeatV':
					case 'offsetU':
					case 'offsetV':
						data.technique[ child.nodeName ] = parseFloat( child.textContent );
						break;

					case 'wrapU':
					case 'wrapV':

						// some files have values for wrapU/wrapV which become NaN via parseInt

						if ( child.textContent.toUpperCase() === 'TRUE' ) {

							data.technique[ child.nodeName ] = 1;

						} else if ( child.textContent.toUpperCase() === 'FALSE' ) {

							data.technique[ child.nodeName ] = 0;

						} else {

							data.technique[ child.nodeName ] = parseInt( child.textContent );

						}

						break;

					case 'bump':
						data[ child.nodeName ] = parseEffectExtraTechniqueBump( child );
						break;

				}

			}

		}

		function parseEffectExtra( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'technique':
						data.technique = parseEffectExtraTechnique( child );
						break;

				}

			}

			return data;

		}

		function parseEffectExtraTechnique( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'double_sided':
						data[ child.nodeName ] = parseInt( child.textContent );
						break;

					case 'bump':
						data[ child.nodeName ] = parseEffectExtraTechniqueBump( child );
						break;

				}

			}

			return data;

		}

		function parseEffectExtraTechniqueBump( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'texture':
						data[ child.nodeName ] = { id: child.getAttribute( 'texture' ), texcoord: child.getAttribute( 'texcoord' ), extra: parseEffectParameterTexture( child ) };
						break;

				}

			}

			return data;

		}

		function buildEffect( data ) {

			return data;

		}

		function getEffect( id ) {

			return getBuild( library.effects[ id ], buildEffect );

		}

		// material

		function parseMaterial( xml ) {

			const data = {
				name: xml.getAttribute( 'name' )
			};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'instance_effect':
						data.url = parseId( child.getAttribute( 'url' ) );
						break;

				}

			}

			library.materials[ xml.getAttribute( 'id' ) ] = data;

		}

		function getTextureLoader( image ) {

			let loader;

			let extension = image.slice( ( image.lastIndexOf( '.' ) - 1 >>> 0 ) + 2 ); // http://www.jstips.co/en/javascript/get-file-extension/
			extension = extension.toLowerCase();

			switch ( extension ) {

				case 'tga':
					loader = tgaLoader;
					break;

				default:
					loader = textureLoader;

			}

			return loader;

		}

		function buildMaterial( data ) {

			const effect = getEffect( data.url );
			const technique = effect.profile.technique;

			let material;

			switch ( technique.type ) {

				case 'phong':
				case 'blinn':
					material = new MeshPhongMaterial();
					break;

				case 'lambert':
					material = new MeshLambertMaterial();
					break;

				default:
					material = new MeshBasicMaterial();
					break;

			}

			material.name = data.name || '';

			function getTexture( textureObject, encoding = null ) {

				const sampler = effect.profile.samplers[ textureObject.id ];
				let image = null;

				// get image

				if ( sampler !== undefined ) {

					const surface = effect.profile.surfaces[ sampler.source ];
					image = getImage( surface.init_from );

				} else {

					console.warn( 'THREE.ColladaLoader: Undefined sampler. Access image directly (see #12530).' );
					image = getImage( textureObject.id );

				}

				// create texture if image is avaiable

				if ( image !== null ) {

					const loader = getTextureLoader( image );

					if ( loader !== undefined ) {

						const texture = loader.load( image );

						const extra = textureObject.extra;

						if ( extra !== undefined && extra.technique !== undefined && isEmpty( extra.technique ) === false ) {

							const technique = extra.technique;

							texture.wrapS = technique.wrapU ? RepeatWrapping : ClampToEdgeWrapping;
							texture.wrapT = technique.wrapV ? RepeatWrapping : ClampToEdgeWrapping;

							texture.offset.set( technique.offsetU || 0, technique.offsetV || 0 );
							texture.repeat.set( technique.repeatU || 1, technique.repeatV || 1 );

						} else {

							texture.wrapS = RepeatWrapping;
							texture.wrapT = RepeatWrapping;

						}

						if ( encoding !== null ) {

							texture.encoding = encoding;

						}

						return texture;

					} else {

						console.warn( 'THREE.ColladaLoader: Loader for texture %s not found.', image );

						return null;

					}

				} else {

					console.warn( 'THREE.ColladaLoader: Couldn\'t create texture with ID:', textureObject.id );

					return null;

				}

			}

			const parameters = technique.parameters;

			for ( const key in parameters ) {

				const parameter = parameters[ key ];

				switch ( key ) {

					case 'diffuse':
						if ( parameter.color ) material.color.fromArray( parameter.color );
						if ( parameter.texture ) material.map = getTexture( parameter.texture, sRGBEncoding );
						break;
					case 'specular':
						if ( parameter.color && material.specular ) material.specular.fromArray( parameter.color );
						if ( parameter.texture ) material.specularMap = getTexture( parameter.texture );
						break;
					case 'bump':
						if ( parameter.texture ) material.normalMap = getTexture( parameter.texture );
						break;
					case 'ambient':
						if ( parameter.texture ) material.lightMap = getTexture( parameter.texture, sRGBEncoding );
						break;
					case 'shininess':
						if ( parameter.float && material.shininess ) material.shininess = parameter.float;
						break;
					case 'emission':
						if ( parameter.color && material.emissive ) material.emissive.fromArray( parameter.color );
						if ( parameter.texture ) material.emissiveMap = getTexture( parameter.texture, sRGBEncoding );
						break;

				}

			}

			material.color.convertSRGBToLinear();
			if ( material.specular ) material.specular.convertSRGBToLinear();
			if ( material.emissive ) material.emissive.convertSRGBToLinear();

			//

			let transparent = parameters[ 'transparent' ];
			let transparency = parameters[ 'transparency' ];

			// <transparency> does not exist but <transparent>

			if ( transparency === undefined && transparent ) {

				transparency = {
					float: 1
				};

			}

			// <transparent> does not exist but <transparency>

			if ( transparent === undefined && transparency ) {

				transparent = {
					opaque: 'A_ONE',
					data: {
						color: [ 1, 1, 1, 1 ]
					} };

			}

			if ( transparent && transparency ) {

				// handle case if a texture exists but no color

				if ( transparent.data.texture ) {

					// we do not set an alpha map (see #13792)

					material.transparent = true;

				} else {

					const color = transparent.data.color;

					switch ( transparent.opaque ) {

						case 'A_ONE':
							material.opacity = color[ 3 ] * transparency.float;
							break;
						case 'RGB_ZERO':
							material.opacity = 1 - ( color[ 0 ] * transparency.float );
							break;
						case 'A_ZERO':
							material.opacity = 1 - ( color[ 3 ] * transparency.float );
							break;
						case 'RGB_ONE':
							material.opacity = color[ 0 ] * transparency.float;
							break;
						default:
							console.warn( 'THREE.ColladaLoader: Invalid opaque type "%s" of transparent tag.', transparent.opaque );

					}

					if ( material.opacity < 1 ) material.transparent = true;

				}

			}

			//


			if ( technique.extra !== undefined && technique.extra.technique !== undefined ) {

				const techniques = technique.extra.technique;

				for ( const k in techniques ) {

					const v = techniques[ k ];

					switch ( k ) {

						case 'double_sided':
							material.side = ( v === 1 ? DoubleSide : FrontSide );
							break;

						case 'bump':
							material.normalMap = getTexture( v.texture );
							material.normalScale = new Vector2( 1, 1 );
							break;

					}

				}

			}

			return material;

		}

		function getMaterial( id ) {

			return getBuild( library.materials[ id ], buildMaterial );

		}

		// camera

		function parseCamera( xml ) {

			const data = {
				name: xml.getAttribute( 'name' )
			};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'optics':
						data.optics = parseCameraOptics( child );
						break;

				}

			}

			library.cameras[ xml.getAttribute( 'id' ) ] = data;

		}

		function parseCameraOptics( xml ) {

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				switch ( child.nodeName ) {

					case 'technique_common':
						return parseCameraTechnique( child );

				}

			}

			return {};

		}

		function parseCameraTechnique( xml ) {

			const data = {};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				switch ( child.nodeName ) {

					case 'perspective':
					case 'orthographic':

						data.technique = child.nodeName;
						data.parameters = parseCameraParameters( child );

						break;

				}

			}

			return data;

		}

		function parseCameraParameters( xml ) {

			const data = {};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				switch ( child.nodeName ) {

					case 'xfov':
					case 'yfov':
					case 'xmag':
					case 'ymag':
					case 'znear':
					case 'zfar':
					case 'aspect_ratio':
						data[ child.nodeName ] = parseFloat( child.textContent );
						break;

				}

			}

			return data;

		}

		function buildCamera( data ) {

			let camera;

			switch ( data.optics.technique ) {

				case 'perspective':
					camera = new PerspectiveCamera(
						data.optics.parameters.yfov,
						data.optics.parameters.aspect_ratio,
						data.optics.parameters.znear,
						data.optics.parameters.zfar
					);
					break;

				case 'orthographic':
					let ymag = data.optics.parameters.ymag;
					let xmag = data.optics.parameters.xmag;
					const aspectRatio = data.optics.parameters.aspect_ratio;

					xmag = ( xmag === undefined ) ? ( ymag * aspectRatio ) : xmag;
					ymag = ( ymag === undefined ) ? ( xmag / aspectRatio ) : ymag;

					xmag *= 0.5;
					ymag *= 0.5;

					camera = new OrthographicCamera(
						- xmag, xmag, ymag, - ymag, // left, right, top, bottom
						data.optics.parameters.znear,
						data.optics.parameters.zfar
					);
					break;

				default:
					camera = new PerspectiveCamera();
					break;

			}

			camera.name = data.name || '';

			return camera;

		}

		function getCamera( id ) {

			const data = library.cameras[ id ];

			if ( data !== undefined ) {

				return getBuild( data, buildCamera );

			}

			console.warn( 'THREE.ColladaLoader: Couldn\'t find camera with ID:', id );

			return null;

		}

		// light

		function parseLight( xml ) {

			let data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'technique_common':
						data = parseLightTechnique( child );
						break;

				}

			}

			library.lights[ xml.getAttribute( 'id' ) ] = data;

		}

		function parseLightTechnique( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'directional':
					case 'point':
					case 'spot':
					case 'ambient':

						data.technique = child.nodeName;
						data.parameters = parseLightParameters( child );

				}

			}

			return data;

		}

		function parseLightParameters( xml ) {

			const data = {};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'color':
						const array = parseFloats( child.textContent );
						data.color = new Color().fromArray( array ).convertSRGBToLinear();
						break;

					case 'falloff_angle':
						data.falloffAngle = parseFloat( child.textContent );
						break;

					case 'quadratic_attenuation':
						const f = parseFloat( child.textContent );
						data.distance = f ? Math.sqrt( 1 / f ) : 0;
						break;

				}

			}

			return data;

		}

		function buildLight( data ) {

			let light;

			switch ( data.technique ) {

				case 'directional':
					light = new DirectionalLight();
					break;

				case 'point':
					light = new PointLight();
					break;

				case 'spot':
					light = new SpotLight();
					break;

				case 'ambient':
					light = new AmbientLight();
					break;

			}

			if ( data.parameters.color ) light.color.copy( data.parameters.color );
			if ( data.parameters.distance ) light.distance = data.parameters.distance;

			return light;

		}

		function getLight( id ) {

			const data = library.lights[ id ];

			if ( data !== undefined ) {

				return getBuild( data, buildLight );

			}

			console.warn( 'THREE.ColladaLoader: Couldn\'t find light with ID:', id );

			return null;

		}

		// geometry

		function parseGeometry( xml ) {

			const data = {
				name: xml.getAttribute( 'name' ),
				sources: {},
				vertices: {},
				primitives: []
			};

			const mesh = getElementsByTagName( xml, 'mesh' )[ 0 ];

			// the following tags inside geometry are not supported yet (see https://github.com/mrdoob/three.js/pull/12606): convex_mesh, spline, brep
			if ( mesh === undefined ) return;

			for ( let i = 0; i < mesh.childNodes.length; i ++ ) {

				const child = mesh.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				const id = child.getAttribute( 'id' );

				switch ( child.nodeName ) {

					case 'source':
						data.sources[ id ] = parseSource( child );
						break;

					case 'vertices':
						// data.sources[ id ] = data.sources[ parseId( getElementsByTagName( child, 'input' )[ 0 ].getAttribute( 'source' ) ) ];
						data.vertices = parseGeometryVertices( child );
						break;

					case 'polygons':
						console.warn( 'THREE.ColladaLoader: Unsupported primitive type: ', child.nodeName );
						break;

					case 'lines':
					case 'linestrips':
					case 'polylist':
					case 'triangles':
						data.primitives.push( parseGeometryPrimitive( child ) );
						break;

					default:
						console.log( child );

				}

			}

			library.geometries[ xml.getAttribute( 'id' ) ] = data;

		}

		function parseSource( xml ) {

			const data = {
				array: [],
				stride: 3
			};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'float_array':
						data.array = parseFloats( child.textContent );
						break;

					case 'Name_array':
						data.array = parseStrings( child.textContent );
						break;

					case 'technique_common':
						const accessor = getElementsByTagName( child, 'accessor' )[ 0 ];

						if ( accessor !== undefined ) {

							data.stride = parseInt( accessor.getAttribute( 'stride' ) );

						}

						break;

				}

			}

			return data;

		}

		function parseGeometryVertices( xml ) {

			const data = {};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				data[ child.getAttribute( 'semantic' ) ] = parseId( child.getAttribute( 'source' ) );

			}

			return data;

		}

		function parseGeometryPrimitive( xml ) {

			const primitive = {
				type: xml.nodeName,
				material: xml.getAttribute( 'material' ),
				count: parseInt( xml.getAttribute( 'count' ) ),
				inputs: {},
				stride: 0,
				hasUV: false
			};

			for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'input':
						const id = parseId( child.getAttribute( 'source' ) );
						const semantic = child.getAttribute( 'semantic' );
						const offset = parseInt( child.getAttribute( 'offset' ) );
						const set = parseInt( child.getAttribute( 'set' ) );
						const inputname = ( set > 0 ? semantic + set : semantic );
						primitive.inputs[ inputname ] = { id: id, offset: offset };
						primitive.stride = Math.max( primitive.stride, offset + 1 );
						if ( semantic === 'TEXCOORD' ) primitive.hasUV = true;
						break;

					case 'vcount':
						primitive.vcount = parseInts( child.textContent );
						break;

					case 'p':
						primitive.p = parseInts( child.textContent );
						break;

				}

			}

			return primitive;

		}

		function groupPrimitives( primitives ) {

			const build = {};

			for ( let i = 0; i < primitives.length; i ++ ) {

				const primitive = primitives[ i ];

				if ( build[ primitive.type ] === undefined ) build[ primitive.type ] = [];

				build[ primitive.type ].push( primitive );

			}

			return build;

		}

		function checkUVCoordinates( primitives ) {

			let count = 0;

			for ( let i = 0, l = primitives.length; i < l; i ++ ) {

				const primitive = primitives[ i ];

				if ( primitive.hasUV === true ) {

					count ++;

				}

			}

			if ( count > 0 && count < primitives.length ) {

				primitives.uvsNeedsFix = true;

			}

		}

		function buildGeometry( data ) {

			const build = {};

			const sources = data.sources;
			const vertices = data.vertices;
			const primitives = data.primitives;

			if ( primitives.length === 0 ) return {};

			// our goal is to create one buffer geometry for a single type of primitives
			// first, we group all primitives by their type

			const groupedPrimitives = groupPrimitives( primitives );

			for ( const type in groupedPrimitives ) {

				const primitiveType = groupedPrimitives[ type ];

				// second, ensure consistent uv coordinates for each type of primitives (polylist,triangles or lines)

				checkUVCoordinates( primitiveType );

				// third, create a buffer geometry for each type of primitives

				build[ type ] = buildGeometryType( primitiveType, sources, vertices );

			}

			return build;

		}

		function buildGeometryType( primitives, sources, vertices ) {

			const build = {};

			const position = { array: [], stride: 0 };
			const normal = { array: [], stride: 0 };
			const uv = { array: [], stride: 0 };
			const uv2 = { array: [], stride: 0 };
			const color = { array: [], stride: 0 };

			const skinIndex = { array: [], stride: 4 };
			const skinWeight = { array: [], stride: 4 };

			const geometry = new BufferGeometry();

			const materialKeys = [];

			let start = 0;

			for ( let p = 0; p < primitives.length; p ++ ) {

				const primitive = primitives[ p ];
				const inputs = primitive.inputs;

				// groups

				let count = 0;

				switch ( primitive.type ) {

					case 'lines':
					case 'linestrips':
						count = primitive.count * 2;
						break;

					case 'triangles':
						count = primitive.count * 3;
						break;

					case 'polylist':

						for ( let g = 0; g < primitive.count; g ++ ) {

							const vc = primitive.vcount[ g ];

							switch ( vc ) {

								case 3:
									count += 3; // single triangle
									break;

								case 4:
									count += 6; // quad, subdivided into two triangles
									break;

								default:
									count += ( vc - 2 ) * 3; // polylist with more than four vertices
									break;

							}

						}

						break;

					default:
						console.warn( 'THREE.ColladaLoader: Unknow primitive type:', primitive.type );

				}

				geometry.addGroup( start, count, p );
				start += count;

				// material

				if ( primitive.material ) {

					materialKeys.push( primitive.material );

				}

				// geometry data

				for ( const name in inputs ) {

					const input = inputs[ name ];

					switch ( name )	{

						case 'VERTEX':
							for ( const key in vertices ) {

								const id = vertices[ key ];

								switch ( key ) {

									case 'POSITION':
										const prevLength = position.array.length;
										buildGeometryData( primitive, sources[ id ], input.offset, position.array );
										position.stride = sources[ id ].stride;

										if ( sources.skinWeights && sources.skinIndices ) {

											buildGeometryData( primitive, sources.skinIndices, input.offset, skinIndex.array );
											buildGeometryData( primitive, sources.skinWeights, input.offset, skinWeight.array );

										}

										// see #3803

										if ( primitive.hasUV === false && primitives.uvsNeedsFix === true ) {

											const count = ( position.array.length - prevLength ) / position.stride;

											for ( let i = 0; i < count; i ++ ) {

												// fill missing uv coordinates

												uv.array.push( 0, 0 );

											}

										}

										break;

									case 'NORMAL':
										buildGeometryData( primitive, sources[ id ], input.offset, normal.array );
										normal.stride = sources[ id ].stride;
										break;

									case 'COLOR':
										buildGeometryData( primitive, sources[ id ], input.offset, color.array );
										color.stride = sources[ id ].stride;
										break;

									case 'TEXCOORD':
										buildGeometryData( primitive, sources[ id ], input.offset, uv.array );
										uv.stride = sources[ id ].stride;
										break;

									case 'TEXCOORD1':
										buildGeometryData( primitive, sources[ id ], input.offset, uv2.array );
										uv.stride = sources[ id ].stride;
										break;

									default:
										console.warn( 'THREE.ColladaLoader: Semantic "%s" not handled in geometry build process.', key );

								}

							}

							break;

						case 'NORMAL':
							buildGeometryData( primitive, sources[ input.id ], input.offset, normal.array );
							normal.stride = sources[ input.id ].stride;
							break;

						case 'COLOR':
							buildGeometryData( primitive, sources[ input.id ], input.offset, color.array, true );
							color.stride = sources[ input.id ].stride;
							break;

						case 'TEXCOORD':
							buildGeometryData( primitive, sources[ input.id ], input.offset, uv.array );
							uv.stride = sources[ input.id ].stride;
							break;

						case 'TEXCOORD1':
							buildGeometryData( primitive, sources[ input.id ], input.offset, uv2.array );
							uv2.stride = sources[ input.id ].stride;
							break;

					}

				}

			}

			// build geometry

			if ( position.array.length > 0 ) geometry.setAttribute( 'position', new Float32BufferAttribute( position.array, position.stride ) );
			if ( normal.array.length > 0 ) geometry.setAttribute( 'normal', new Float32BufferAttribute( normal.array, normal.stride ) );
			if ( color.array.length > 0 ) geometry.setAttribute( 'color', new Float32BufferAttribute( color.array, color.stride ) );
			if ( uv.array.length > 0 ) geometry.setAttribute( 'uv', new Float32BufferAttribute( uv.array, uv.stride ) );
			if ( uv2.array.length > 0 ) geometry.setAttribute( 'uv2', new Float32BufferAttribute( uv2.array, uv2.stride ) );

			if ( skinIndex.array.length > 0 ) geometry.setAttribute( 'skinIndex', new Float32BufferAttribute( skinIndex.array, skinIndex.stride ) );
			if ( skinWeight.array.length > 0 ) geometry.setAttribute( 'skinWeight', new Float32BufferAttribute( skinWeight.array, skinWeight.stride ) );

			build.data = geometry;
			build.type = primitives[ 0 ].type;
			build.materialKeys = materialKeys;

			return build;

		}

		function buildGeometryData( primitive, source, offset, array, isColor = false ) {

			const indices = primitive.p;
			const stride = primitive.stride;
			const vcount = primitive.vcount;

			function pushVector( i ) {

				let index = indices[ i + offset ] * sourceStride;
				const length = index + sourceStride;

				for ( ; index < length; index ++ ) {

					array.push( sourceArray[ index ] );

				}

				if ( isColor ) {

					// convert the vertex colors from srgb to linear if present
					const startIndex = array.length - sourceStride - 1;
					tempColor.setRGB(
						array[ startIndex + 0 ],
						array[ startIndex + 1 ],
						array[ startIndex + 2 ]
					).convertSRGBToLinear();

					array[ startIndex + 0 ] = tempColor.r;
					array[ startIndex + 1 ] = tempColor.g;
					array[ startIndex + 2 ] = tempColor.b;

				}

			}

			const sourceArray = source.array;
			const sourceStride = source.stride;

			if ( primitive.vcount !== undefined ) {

				let index = 0;

				for ( let i = 0, l = vcount.length; i < l; i ++ ) {

					const count = vcount[ i ];

					if ( count === 4 ) {

						const a = index + stride * 0;
						const b = index + stride * 1;
						const c = index + stride * 2;
						const d = index + stride * 3;

						pushVector( a ); pushVector( b ); pushVector( d );
						pushVector( b ); pushVector( c ); pushVector( d );

					} else if ( count === 3 ) {

						const a = index + stride * 0;
						const b = index + stride * 1;
						const c = index + stride * 2;

						pushVector( a ); pushVector( b ); pushVector( c );

					} else if ( count > 4 ) {

						for ( let k = 1, kl = ( count - 2 ); k <= kl; k ++ ) {

							const a = index + stride * 0;
							const b = index + stride * k;
							const c = index + stride * ( k + 1 );

							pushVector( a ); pushVector( b ); pushVector( c );

						}

					}

					index += stride * count;

				}

			} else {

				for ( let i = 0, l = indices.length; i < l; i += stride ) {

					pushVector( i );

				}

			}

		}

		function getGeometry( id ) {

			return getBuild( library.geometries[ id ], buildGeometry );

		}

		// kinematics

		function parseKinematicsModel( xml ) {

			const data = {
				name: xml.getAttribute( 'name' ) || '',
				joints: {},
				links: []
			};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'technique_common':
						parseKinematicsTechniqueCommon( child, data );
						break;

				}

			}

			library.kinematicsModels[ xml.getAttribute( 'id' ) ] = data;

		}

		function buildKinematicsModel( data ) {

			if ( data.build !== undefined ) return data.build;

			return data;

		}

		function getKinematicsModel( id ) {

			return getBuild( library.kinematicsModels[ id ], buildKinematicsModel );

		}

		function parseKinematicsTechniqueCommon( xml, data ) {

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'joint':
						data.joints[ child.getAttribute( 'sid' ) ] = parseKinematicsJoint( child );
						break;

					case 'link':
						data.links.push( parseKinematicsLink( child ) );
						break;

				}

			}

		}

		function parseKinematicsJoint( xml ) {

			let data;

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'prismatic':
					case 'revolute':
						data = parseKinematicsJointParameter( child );
						break;

				}

			}

			return data;

		}

		function parseKinematicsJointParameter( xml ) {

			const data = {
				sid: xml.getAttribute( 'sid' ),
				name: xml.getAttribute( 'name' ) || '',
				axis: new Vector3(),
				limits: {
					min: 0,
					max: 0
				},
				type: xml.nodeName,
				static: false,
				zeroPosition: 0,
				middlePosition: 0
			};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'axis':
						const array = parseFloats( child.textContent );
						data.axis.fromArray( array );
						break;
					case 'limits':
						const max = child.getElementsByTagName( 'max' )[ 0 ];
						const min = child.getElementsByTagName( 'min' )[ 0 ];

						data.limits.max = parseFloat( max.textContent );
						data.limits.min = parseFloat( min.textContent );
						break;

				}

			}

			// if min is equal to or greater than max, consider the joint static

			if ( data.limits.min >= data.limits.max ) {

				data.static = true;

			}

			// calculate middle position

			data.middlePosition = ( data.limits.min + data.limits.max ) / 2.0;

			return data;

		}

		function parseKinematicsLink( xml ) {

			const data = {
				sid: xml.getAttribute( 'sid' ),
				name: xml.getAttribute( 'name' ) || '',
				attachments: [],
				transforms: []
			};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'attachment_full':
						data.attachments.push( parseKinematicsAttachment( child ) );
						break;

					case 'matrix':
					case 'translate':
					case 'rotate':
						data.transforms.push( parseKinematicsTransform( child ) );
						break;

				}

			}

			return data;

		}

		function parseKinematicsAttachment( xml ) {

			const data = {
				joint: xml.getAttribute( 'joint' ).split( '/' ).pop(),
				transforms: [],
				links: []
			};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'link':
						data.links.push( parseKinematicsLink( child ) );
						break;

					case 'matrix':
					case 'translate':
					case 'rotate':
						data.transforms.push( parseKinematicsTransform( child ) );
						break;

				}

			}

			return data;

		}

		function parseKinematicsTransform( xml ) {

			const data = {
				type: xml.nodeName
			};

			const array = parseFloats( xml.textContent );

			switch ( data.type ) {

				case 'matrix':
					data.obj = new Matrix4();
					data.obj.fromArray( array ).transpose();
					break;

				case 'translate':
					data.obj = new Vector3();
					data.obj.fromArray( array );
					break;

				case 'rotate':
					data.obj = new Vector3();
					data.obj.fromArray( array );
					data.angle = MathUtils.degToRad( array[ 3 ] );
					break;

			}

			return data;

		}

		// physics

		function parsePhysicsModel( xml ) {

			const data = {
				name: xml.getAttribute( 'name' ) || '',
				rigidBodies: {}
			};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'rigid_body':
						data.rigidBodies[ child.getAttribute( 'name' ) ] = {};
						parsePhysicsRigidBody( child, data.rigidBodies[ child.getAttribute( 'name' ) ] );
						break;

				}

			}

			library.physicsModels[ xml.getAttribute( 'id' ) ] = data;

		}

		function parsePhysicsRigidBody( xml, data ) {

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'technique_common':
						parsePhysicsTechniqueCommon( child, data );
						break;

				}

			}

		}

		function parsePhysicsTechniqueCommon( xml, data ) {

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'inertia':
						data.inertia = parseFloats( child.textContent );
						break;

					case 'mass':
						data.mass = parseFloats( child.textContent )[ 0 ];
						break;

				}

			}

		}

		// scene

		function parseKinematicsScene( xml ) {

			const data = {
				bindJointAxis: []
			};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'bind_joint_axis':
						data.bindJointAxis.push( parseKinematicsBindJointAxis( child ) );
						break;

				}

			}

			library.kinematicsScenes[ parseId( xml.getAttribute( 'url' ) ) ] = data;

		}

		function parseKinematicsBindJointAxis( xml ) {

			const data = {
				target: xml.getAttribute( 'target' ).split( '/' ).pop()
			};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				switch ( child.nodeName ) {

					case 'axis':
						const param = child.getElementsByTagName( 'param' )[ 0 ];
						data.axis = param.textContent;
						const tmpJointIndex = data.axis.split( 'inst_' ).pop().split( 'axis' )[ 0 ];
						data.jointIndex = tmpJointIndex.substr( 0, tmpJointIndex.length - 1 );
						break;

				}

			}

			return data;

		}

		function buildKinematicsScene( data ) {

			if ( data.build !== undefined ) return data.build;

			return data;

		}

		function getKinematicsScene( id ) {

			return getBuild( library.kinematicsScenes[ id ], buildKinematicsScene );

		}

		function setupKinematics() {

			const kinematicsModelId = Object.keys( library.kinematicsModels )[ 0 ];
			const kinematicsSceneId = Object.keys( library.kinematicsScenes )[ 0 ];
			const visualSceneId = Object.keys( library.visualScenes )[ 0 ];

			if ( kinematicsModelId === undefined || kinematicsSceneId === undefined ) return;

			const kinematicsModel = getKinematicsModel( kinematicsModelId );
			const kinematicsScene = getKinematicsScene( kinematicsSceneId );
			const visualScene = getVisualScene( visualSceneId );

			const bindJointAxis = kinematicsScene.bindJointAxis;
			const jointMap = {};

			for ( let i = 0, l = bindJointAxis.length; i < l; i ++ ) {

				const axis = bindJointAxis[ i ];

				// the result of the following query is an element of type 'translate', 'rotate','scale' or 'matrix'

				const targetElement = collada.querySelector( '[sid="' + axis.target + '"]' );

				if ( targetElement ) {

					// get the parent of the transform element

					const parentVisualElement = targetElement.parentElement;

					// connect the joint of the kinematics model with the element in the visual scene

					connect( axis.jointIndex, parentVisualElement );

				}

			}

			function connect( jointIndex, visualElement ) {

				const visualElementName = visualElement.getAttribute( 'name' );
				const joint = kinematicsModel.joints[ jointIndex ];

				visualScene.traverse( function ( object ) {

					if ( object.name === visualElementName ) {

						jointMap[ jointIndex ] = {
							object: object,
							transforms: buildTransformList( visualElement ),
							joint: joint,
							position: joint.zeroPosition
						};

					}

				} );

			}

			const m0 = new Matrix4();

			kinematics = {

				joints: kinematicsModel && kinematicsModel.joints,

				getJointValue: function ( jointIndex ) {

					const jointData = jointMap[ jointIndex ];

					if ( jointData ) {

						return jointData.position;

					} else {

						console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' doesn\'t exist.' );

					}

				},

				setJointValue: function ( jointIndex, value ) {

					const jointData = jointMap[ jointIndex ];

					if ( jointData ) {

						const joint = jointData.joint;

						if ( value > joint.limits.max || value < joint.limits.min ) {

							console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' value ' + value + ' outside of limits (min: ' + joint.limits.min + ', max: ' + joint.limits.max + ').' );

						} else if ( joint.static ) {

							console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' is static.' );

						} else {

							const object = jointData.object;
							const axis = joint.axis;
							const transforms = jointData.transforms;

							matrix.identity();

							// each update, we have to apply all transforms in the correct order

							for ( let i = 0; i < transforms.length; i ++ ) {

								const transform = transforms[ i ];

								// if there is a connection of the transform node with a joint, apply the joint value

								if ( transform.sid && transform.sid.indexOf( jointIndex ) !== - 1 ) {

									switch ( joint.type ) {

										case 'revolute':
											matrix.multiply( m0.makeRotationAxis( axis, MathUtils.degToRad( value ) ) );
											break;

										case 'prismatic':
											matrix.multiply( m0.makeTranslation( axis.x * value, axis.y * value, axis.z * value ) );
											break;

										default:
											console.warn( 'THREE.ColladaLoader: Unknown joint type: ' + joint.type );
											break;

									}

								} else {

									switch ( transform.type ) {

										case 'matrix':
											matrix.multiply( transform.obj );
											break;

										case 'translate':
											matrix.multiply( m0.makeTranslation( transform.obj.x, transform.obj.y, transform.obj.z ) );
											break;

										case 'scale':
											matrix.scale( transform.obj );
											break;

										case 'rotate':
											matrix.multiply( m0.makeRotationAxis( transform.obj, transform.angle ) );
											break;

									}

								}

							}

							object.matrix.copy( matrix );
							object.matrix.decompose( object.position, object.quaternion, object.scale );

							jointMap[ jointIndex ].position = value;

						}

					} else {

						console.log( 'THREE.ColladaLoader: ' + jointIndex + ' does not exist.' );

					}

				}

			};

		}

		function buildTransformList( node ) {

			const transforms = [];

			const xml = collada.querySelector( '[id="' + node.id + '"]' );

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				let array, vector;

				switch ( child.nodeName ) {

					case 'matrix':
						array = parseFloats( child.textContent );
						const matrix = new Matrix4().fromArray( array ).transpose();
						transforms.push( {
							sid: child.getAttribute( 'sid' ),
							type: child.nodeName,
							obj: matrix
						} );
						break;

					case 'translate':
					case 'scale':
						array = parseFloats( child.textContent );
						vector = new Vector3().fromArray( array );
						transforms.push( {
							sid: child.getAttribute( 'sid' ),
							type: child.nodeName,
							obj: vector
						} );
						break;

					case 'rotate':
						array = parseFloats( child.textContent );
						vector = new Vector3().fromArray( array );
						const angle = MathUtils.degToRad( array[ 3 ] );
						transforms.push( {
							sid: child.getAttribute( 'sid' ),
							type: child.nodeName,
							obj: vector,
							angle: angle
						} );
						break;

				}

			}

			return transforms;

		}

		// nodes

		function prepareNodes( xml ) {

			const elements = xml.getElementsByTagName( 'node' );

			// ensure all node elements have id attributes

			for ( let i = 0; i < elements.length; i ++ ) {

				const element = elements[ i ];

				if ( element.hasAttribute( 'id' ) === false ) {

					element.setAttribute( 'id', generateId() );

				}

			}

		}

		const matrix = new Matrix4();
		const vector = new Vector3();

		function parseNode( xml ) {

			const data = {
				name: xml.getAttribute( 'name' ) || '',
				type: xml.getAttribute( 'type' ),
				id: xml.getAttribute( 'id' ),
				sid: xml.getAttribute( 'sid' ),
				matrix: new Matrix4(),
				nodes: [],
				instanceCameras: [],
				instanceControllers: [],
				instanceLights: [],
				instanceGeometries: [],
				instanceNodes: [],
				transforms: {}
			};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				if ( child.nodeType !== 1 ) continue;

				let array;

				switch ( child.nodeName ) {

					case 'node':
						data.nodes.push( child.getAttribute( 'id' ) );
						parseNode( child );
						break;

					case 'instance_camera':
						data.instanceCameras.push( parseId( child.getAttribute( 'url' ) ) );
						break;

					case 'instance_controller':
						data.instanceControllers.push( parseNodeInstance( child ) );
						break;

					case 'instance_light':
						data.instanceLights.push( parseId( child.getAttribute( 'url' ) ) );
						break;

					case 'instance_geometry':
						data.instanceGeometries.push( parseNodeInstance( child ) );
						break;

					case 'instance_node':
						data.instanceNodes.push( parseId( child.getAttribute( 'url' ) ) );
						break;

					case 'matrix':
						array = parseFloats( child.textContent );
						data.matrix.multiply( matrix.fromArray( array ).transpose() );
						data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
						break;

					case 'translate':
						array = parseFloats( child.textContent );
						vector.fromArray( array );
						data.matrix.multiply( matrix.makeTranslation( vector.x, vector.y, vector.z ) );
						data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
						break;

					case 'rotate':
						array = parseFloats( child.textContent );
						const angle = MathUtils.degToRad( array[ 3 ] );
						data.matrix.multiply( matrix.makeRotationAxis( vector.fromArray( array ), angle ) );
						data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
						break;

					case 'scale':
						array = parseFloats( child.textContent );
						data.matrix.scale( vector.fromArray( array ) );
						data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
						break;

					case 'extra':
						break;

					default:
						console.log( child );

				}

			}

			if ( hasNode( data.id ) ) {

				console.warn( 'THREE.ColladaLoader: There is already a node with ID %s. Exclude current node from further processing.', data.id );

			} else {

				library.nodes[ data.id ] = data;

			}

			return data;

		}

		function parseNodeInstance( xml ) {

			const data = {
				id: parseId( xml.getAttribute( 'url' ) ),
				materials: {},
				skeletons: []
			};

			for ( let i = 0; i < xml.childNodes.length; i ++ ) {

				const child = xml.childNodes[ i ];

				switch ( child.nodeName ) {

					case 'bind_material':
						const instances = child.getElementsByTagName( 'instance_material' );

						for ( let j = 0; j < instances.length; j ++ ) {

							const instance = instances[ j ];
							const symbol = instance.getAttribute( 'symbol' );
							const target = instance.getAttribute( 'target' );

							data.materials[ symbol ] = parseId( target );

						}

						break;

					case 'skeleton':
						data.skeletons.push( parseId( child.textContent ) );
						break;

					default:
						break;

				}

			}

			return data;

		}

		function buildSkeleton( skeletons, joints ) {

			const boneData = [];
			const sortedBoneData = [];

			let i, j, data;

			// a skeleton can have multiple root bones. collada expresses this
			// situtation with multiple "skeleton" tags per controller instance

			for ( i = 0; i < skeletons.length; i ++ ) {

				const skeleton = skeletons[ i ];

				let root;

				if ( hasNode( skeleton ) ) {

					root = getNode( skeleton );
					buildBoneHierarchy( root, joints, boneData );

				} else if ( hasVisualScene( skeleton ) ) {

					// handle case where the skeleton refers to the visual scene (#13335)

					const visualScene = library.visualScenes[ skeleton ];
					const children = visualScene.children;

					for ( let j = 0; j < children.length; j ++ ) {

						const child = children[ j ];

						if ( child.type === 'JOINT' ) {

							const root = getNode( child.id );
							buildBoneHierarchy( root, joints, boneData );

						}

					}

				} else {

					console.error( 'THREE.ColladaLoader: Unable to find root bone of skeleton with ID:', skeleton );

				}

			}

			// sort bone data (the order is defined in the corresponding controller)

			for ( i = 0; i < joints.length; i ++ ) {

				for ( j = 0; j < boneData.length; j ++ ) {

					data = boneData[ j ];

					if ( data.bone.name === joints[ i ].name ) {

						sortedBoneData[ i ] = data;
						data.processed = true;
						break;

					}

				}

			}

			// add unprocessed bone data at the end of the list

			for ( i = 0; i < boneData.length; i ++ ) {

				data = boneData[ i ];

				if ( data.processed === false ) {

					sortedBoneData.push( data );
					data.processed = true;

				}

			}

			// setup arrays for skeleton creation

			const bones = [];
			const boneInverses = [];

			for ( i = 0; i < sortedBoneData.length; i ++ ) {

				data = sortedBoneData[ i ];

				bones.push( data.bone );
				boneInverses.push( data.boneInverse );

			}

			return new Skeleton( bones, boneInverses );

		}

		function buildBoneHierarchy( root, joints, boneData ) {

			// setup bone data from visual scene

			root.traverse( function ( object ) {

				if ( object.isBone === true ) {

					let boneInverse;

					// retrieve the boneInverse from the controller data

					for ( let i = 0; i < joints.length; i ++ ) {

						const joint = joints[ i ];

						if ( joint.name === object.name ) {

							boneInverse = joint.boneInverse;
							break;

						}

					}

					if ( boneInverse === undefined ) {

						// Unfortunately, there can be joints in the visual scene that are not part of the
						// corresponding controller. In this case, we have to create a dummy boneInverse matrix
						// for the respective bone. This bone won't affect any vertices, because there are no skin indices
						// and weights defined for it. But we still have to add the bone to the sorted bone list in order to
						// ensure a correct animation of the model.

						boneInverse = new Matrix4();

					}

					boneData.push( { bone: object, boneInverse: boneInverse, processed: false } );

				}

			} );

		}

		function buildNode( data ) {

			const objects = [];

			const matrix = data.matrix;
			const nodes = data.nodes;
			const type = data.type;
			const instanceCameras = data.instanceCameras;
			const instanceControllers = data.instanceControllers;
			const instanceLights = data.instanceLights;
			const instanceGeometries = data.instanceGeometries;
			const instanceNodes = data.instanceNodes;

			// nodes

			for ( let i = 0, l = nodes.length; i < l; i ++ ) {

				objects.push( getNode( nodes[ i ] ) );

			}

			// instance cameras

			for ( let i = 0, l = instanceCameras.length; i < l; i ++ ) {

				const instanceCamera = getCamera( instanceCameras[ i ] );

				if ( instanceCamera !== null ) {

					objects.push( instanceCamera.clone() );

				}

			}

			// instance controllers

			for ( let i = 0, l = instanceControllers.length; i < l; i ++ ) {

				const instance = instanceControllers[ i ];
				const controller = getController( instance.id );
				const geometries = getGeometry( controller.id );
				const newObjects = buildObjects( geometries, instance.materials );

				const skeletons = instance.skeletons;
				const joints = controller.skin.joints;

				const skeleton = buildSkeleton( skeletons, joints );

				for ( let j = 0, jl = newObjects.length; j < jl; j ++ ) {

					const object = newObjects[ j ];

					if ( object.isSkinnedMesh ) {

						object.bind( skeleton, controller.skin.bindMatrix );
						object.normalizeSkinWeights();

					}

					objects.push( object );

				}

			}

			// instance lights

			for ( let i = 0, l = instanceLights.length; i < l; i ++ ) {

				const instanceLight = getLight( instanceLights[ i ] );

				if ( instanceLight !== null ) {

					objects.push( instanceLight.clone() );

				}

			}

			// instance geometries

			for ( let i = 0, l = instanceGeometries.length; i < l; i ++ ) {

				const instance = instanceGeometries[ i ];

				// a single geometry instance in collada can lead to multiple object3Ds.
				// this is the case when primitives are combined like triangles and lines

				const geometries = getGeometry( instance.id );
				const newObjects = buildObjects( geometries, instance.materials );

				for ( let j = 0, jl = newObjects.length; j < jl; j ++ ) {

					objects.push( newObjects[ j ] );

				}

			}

			// instance nodes

			for ( let i = 0, l = instanceNodes.length; i < l; i ++ ) {

				objects.push( getNode( instanceNodes[ i ] ).clone() );

			}

			let object;

			if ( nodes.length === 0 && objects.length === 1 ) {

				object = objects[ 0 ];

			} else {

				object = ( type === 'JOINT' ) ? new Bone() : new Group();

				for ( let i = 0; i < objects.length; i ++ ) {

					object.add( objects[ i ] );

				}

			}

			object.name = ( type === 'JOINT' ) ? data.sid : data.name;
			object.matrix.copy( matrix );
			object.matrix.decompose( object.position, object.quaternion, object.scale );

			return object;

		}

		const fallbackMaterial = new MeshBasicMaterial( { color: 0xff00ff } );

		function resolveMaterialBinding( keys, instanceMaterials ) {

			const materials = [];

			for ( let i = 0, l = keys.length; i < l; i ++ ) {

				const id = instanceMaterials[ keys[ i ] ];

				if ( id === undefined ) {

					console.warn( 'THREE.ColladaLoader: Material with key %s not found. Apply fallback material.', keys[ i ] );
					materials.push( fallbackMaterial );

				} else {

					materials.push( getMaterial( id ) );

				}

			}

			return materials;

		}

		function buildObjects( geometries, instanceMaterials ) {

			const objects = [];

			for ( const type in geometries ) {

				const geometry = geometries[ type ];

				const materials = resolveMaterialBinding( geometry.materialKeys, instanceMaterials );

				// handle case if no materials are defined

				if ( materials.length === 0 ) {

					if ( type === 'lines' || type === 'linestrips' ) {

						materials.push( new LineBasicMaterial() );

					} else {

						materials.push( new MeshPhongMaterial() );

					}

				}

				// regard skinning

				const skinning = ( geometry.data.attributes.skinIndex !== undefined );

				// choose between a single or multi materials (material array)

				const material = ( materials.length === 1 ) ? materials[ 0 ] : materials;

				// now create a specific 3D object

				let object;

				switch ( type ) {

					case 'lines':
						object = new LineSegments( geometry.data, material );
						break;

					case 'linestrips':
						object = new Line( geometry.data, material );
						break;

					case 'triangles':
					case 'polylist':
						if ( skinning ) {

							object = new SkinnedMesh( geometry.data, material );

						} else {

							object = new Mesh( geometry.data, material );

						}

						break;

				}

				objects.push( object );

			}

			return objects;

		}

		function hasNode( id ) {

			return library.nodes[ id ] !== undefined;

		}

		function getNode( id ) {

			return getBuild( library.nodes[ id ], buildNode );

		}

		// visual scenes

		function parseVisualScene( xml ) {

			const data = {
				name: xml.getAttribute( 'name' ),
				children: []
			};

			prepareNodes( xml );

			const elements = getElementsByTagName( xml, 'node' );

			for ( let i = 0; i < elements.length; i ++ ) {

				data.children.push( parseNode( elements[ i ] ) );

			}

			library.visualScenes[ xml.getAttribute( 'id' ) ] = data;

		}

		function buildVisualScene( data ) {

			const group = new Group();
			group.name = data.name;

			const children = data.children;

			for ( let i = 0; i < children.length; i ++ ) {

				const child = children[ i ];

				group.add( getNode( child.id ) );

			}

			return group;

		}

		function hasVisualScene( id ) {

			return library.visualScenes[ id ] !== undefined;

		}

		function getVisualScene( id ) {

			return getBuild( library.visualScenes[ id ], buildVisualScene );

		}

		// scenes

		function parseScene( xml ) {

			const instance = getElementsByTagName( xml, 'instance_visual_scene' )[ 0 ];
			return getVisualScene( parseId( instance.getAttribute( 'url' ) ) );

		}

		function setupAnimations() {

			const clips = library.clips;

			if ( isEmpty( clips ) === true ) {

				if ( isEmpty( library.animations ) === false ) {

					// if there are animations but no clips, we create a default clip for playback

					const tracks = [];

					for ( const id in library.animations ) {

						const animationTracks = getAnimation( id );

						for ( let i = 0, l = animationTracks.length; i < l; i ++ ) {

							tracks.push( animationTracks[ i ] );

						}

					}

					animations.push( new AnimationClip( 'default', - 1, tracks ) );

				}

			} else {

				for ( const id in clips ) {

					animations.push( getAnimationClip( id ) );

				}

			}

		}

		// convert the parser error element into text with each child elements text
		// separated by new lines.

		function parserErrorToText( parserError ) {

			let result = '';
			const stack = [ parserError ];

			while ( stack.length ) {

				const node = stack.shift();

				if ( node.nodeType === Node.TEXT_NODE ) {

					result += node.textContent;

				} else {

					result += '\n';
					stack.push.apply( stack, node.childNodes );

				}

			}

			return result.trim();

		}

		if ( text.length === 0 ) {

			return { scene: new Scene() };

		}

		const xml = new DOMParser().parseFromString( text, 'application/xml' );

		const collada = getElementsByTagName( xml, 'COLLADA' )[ 0 ];

		const parserError = xml.getElementsByTagName( 'parsererror' )[ 0 ];
		if ( parserError !== undefined ) {

			// Chrome will return parser error with a div in it

			const errorElement = getElementsByTagName( parserError, 'div' )[ 0 ];
			let errorText;

			if ( errorElement ) {

				errorText = errorElement.textContent;

			} else {

				errorText = parserErrorToText( parserError );

			}

			console.error( 'THREE.ColladaLoader: Failed to parse collada file.\n', errorText );

			return null;

		}

		// metadata

		const version = collada.getAttribute( 'version' );
		console.log( 'THREE.ColladaLoader: File version', version );

		const asset = parseAsset( getElementsByTagName( collada, 'asset' )[ 0 ] );
		const textureLoader = new TextureLoader( this.manager );
		textureLoader.setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );

		let tgaLoader;

		if ( TGALoader ) {

			tgaLoader = new TGALoader( this.manager );
			tgaLoader.setPath( this.resourcePath || path );

		}

		//

		const tempColor = new Color();
		const animations = [];
		let kinematics = {};
		let count = 0;

		//

		const library = {
			animations: {},
			clips: {},
			controllers: {},
			images: {},
			effects: {},
			materials: {},
			cameras: {},
			lights: {},
			geometries: {},
			nodes: {},
			visualScenes: {},
			kinematicsModels: {},
			physicsModels: {},
			kinematicsScenes: {}
		};

		parseLibrary( collada, 'library_animations', 'animation', parseAnimation );
		parseLibrary( collada, 'library_animation_clips', 'animation_clip', parseAnimationClip );
		parseLibrary( collada, 'library_controllers', 'controller', parseController );
		parseLibrary( collada, 'library_images', 'image', parseImage );
		parseLibrary( collada, 'library_effects', 'effect', parseEffect );
		parseLibrary( collada, 'library_materials', 'material', parseMaterial );
		parseLibrary( collada, 'library_cameras', 'camera', parseCamera );
		parseLibrary( collada, 'library_lights', 'light', parseLight );
		parseLibrary( collada, 'library_geometries', 'geometry', parseGeometry );
		parseLibrary( collada, 'library_nodes', 'node', parseNode );
		parseLibrary( collada, 'library_visual_scenes', 'visual_scene', parseVisualScene );
		parseLibrary( collada, 'library_kinematics_models', 'kinematics_model', parseKinematicsModel );
		parseLibrary( collada, 'library_physics_models', 'physics_model', parsePhysicsModel );
		parseLibrary( collada, 'scene', 'instance_kinematics_scene', parseKinematicsScene );

		buildLibrary( library.animations, buildAnimation );
		buildLibrary( library.clips, buildAnimationClip );
		buildLibrary( library.controllers, buildController );
		buildLibrary( library.images, buildImage );
		buildLibrary( library.effects, buildEffect );
		buildLibrary( library.materials, buildMaterial );
		buildLibrary( library.cameras, buildCamera );
		buildLibrary( library.lights, buildLight );
		buildLibrary( library.geometries, buildGeometry );
		buildLibrary( library.visualScenes, buildVisualScene );

		setupAnimations();
		setupKinematics();

		const scene = parseScene( getElementsByTagName( collada, 'scene' )[ 0 ] );
		scene.animations = animations;

		if ( asset.upAxis === 'Z_UP' ) {

			scene.quaternion.setFromEuler( new Euler( - Math.PI / 2, 0, 0 ) );

		}

		scene.scale.multiplyScalar( asset.unit );

		return {
			get animations() {

				console.warn( 'THREE.ColladaLoader: Please access animations over scene.animations now.' );
				return animations;

			},
			kinematics: kinematics,
			library: library,
			scene: scene
		};

	}
Example #18
Source File: OutlinePass.js    From Computer-Graphics with MIT License 4 votes vote down vote up
constructor( resolution, scene, camera, selectedObjects ) {

		super();

		this.renderScene = scene;
		this.renderCamera = camera;
		this.selectedObjects = selectedObjects !== undefined ? selectedObjects : [];
		this.visibleEdgeColor = new Color( 1, 1, 1 );
		this.hiddenEdgeColor = new Color( 0.1, 0.04, 0.02 );
		this.edgeGlow = 0.0;
		this.usePatternTexture = false;
		this.edgeThickness = 1.0;
		this.edgeStrength = 3.0;
		this.downSampleRatio = 2;
		this.pulsePeriod = 0;

		this._visibilityCache = new Map();


		this.resolution = ( resolution !== undefined ) ? new Vector2( resolution.x, resolution.y ) : new Vector2( 256, 256 );

		const pars = { minFilter: LinearFilter, magFilter: LinearFilter, format: RGBAFormat };

		const resx = Math.round( this.resolution.x / this.downSampleRatio );
		const resy = Math.round( this.resolution.y / this.downSampleRatio );

		this.renderTargetMaskBuffer = new WebGLRenderTarget( this.resolution.x, this.resolution.y, pars );
		this.renderTargetMaskBuffer.texture.name = 'OutlinePass.mask';
		this.renderTargetMaskBuffer.texture.generateMipmaps = false;

		this.depthMaterial = new MeshDepthMaterial();
		this.depthMaterial.side = DoubleSide;
		this.depthMaterial.depthPacking = RGBADepthPacking;
		this.depthMaterial.blending = NoBlending;

		this.prepareMaskMaterial = this.getPrepareMaskMaterial();
		this.prepareMaskMaterial.side = DoubleSide;
		this.prepareMaskMaterial.fragmentShader = replaceDepthToViewZ( this.prepareMaskMaterial.fragmentShader, this.renderCamera );

		this.renderTargetDepthBuffer = new WebGLRenderTarget( this.resolution.x, this.resolution.y, pars );
		this.renderTargetDepthBuffer.texture.name = 'OutlinePass.depth';
		this.renderTargetDepthBuffer.texture.generateMipmaps = false;

		this.renderTargetMaskDownSampleBuffer = new WebGLRenderTarget( resx, resy, pars );
		this.renderTargetMaskDownSampleBuffer.texture.name = 'OutlinePass.depthDownSample';
		this.renderTargetMaskDownSampleBuffer.texture.generateMipmaps = false;

		this.renderTargetBlurBuffer1 = new WebGLRenderTarget( resx, resy, pars );
		this.renderTargetBlurBuffer1.texture.name = 'OutlinePass.blur1';
		this.renderTargetBlurBuffer1.texture.generateMipmaps = false;
		this.renderTargetBlurBuffer2 = new WebGLRenderTarget( Math.round( resx / 2 ), Math.round( resy / 2 ), pars );
		this.renderTargetBlurBuffer2.texture.name = 'OutlinePass.blur2';
		this.renderTargetBlurBuffer2.texture.generateMipmaps = false;

		this.edgeDetectionMaterial = this.getEdgeDetectionMaterial();
		this.renderTargetEdgeBuffer1 = new WebGLRenderTarget( resx, resy, pars );
		this.renderTargetEdgeBuffer1.texture.name = 'OutlinePass.edge1';
		this.renderTargetEdgeBuffer1.texture.generateMipmaps = false;
		this.renderTargetEdgeBuffer2 = new WebGLRenderTarget( Math.round( resx / 2 ), Math.round( resy / 2 ), pars );
		this.renderTargetEdgeBuffer2.texture.name = 'OutlinePass.edge2';
		this.renderTargetEdgeBuffer2.texture.generateMipmaps = false;

		const MAX_EDGE_THICKNESS = 4;
		const MAX_EDGE_GLOW = 4;

		this.separableBlurMaterial1 = this.getSeperableBlurMaterial( MAX_EDGE_THICKNESS );
		this.separableBlurMaterial1.uniforms[ 'texSize' ].value.set( resx, resy );
		this.separableBlurMaterial1.uniforms[ 'kernelRadius' ].value = 1;
		this.separableBlurMaterial2 = this.getSeperableBlurMaterial( MAX_EDGE_GLOW );
		this.separableBlurMaterial2.uniforms[ 'texSize' ].value.set( Math.round( resx / 2 ), Math.round( resy / 2 ) );
		this.separableBlurMaterial2.uniforms[ 'kernelRadius' ].value = MAX_EDGE_GLOW;

		// Overlay material
		this.overlayMaterial = this.getOverlayMaterial();

		// copy material
		if ( CopyShader === undefined ) console.error( 'THREE.OutlinePass relies on CopyShader' );

		const copyShader = CopyShader;

		this.copyUniforms = UniformsUtils.clone( copyShader.uniforms );
		this.copyUniforms[ 'opacity' ].value = 1.0;

		this.materialCopy = new ShaderMaterial( {
			uniforms: this.copyUniforms,
			vertexShader: copyShader.vertexShader,
			fragmentShader: copyShader.fragmentShader,
			blending: NoBlending,
			depthTest: false,
			depthWrite: false,
			transparent: true
		} );

		this.enabled = true;
		this.needsSwap = false;

		this._oldClearColor = new Color();
		this.oldClearAlpha = 1;

		this.fsQuad = new FullScreenQuad( null );

		this.tempPulseColor1 = new Color();
		this.tempPulseColor2 = new Color();
		this.textureMatrix = new Matrix4();

		function replaceDepthToViewZ( string, camera ) {

			const type = camera.isPerspectiveCamera ? 'perspective' : 'orthographic';

			return string.replace( /DEPTH_TO_VIEW_Z/g, type + 'DepthToViewZ' );

		}

	}
Example #19
Source File: GLTFLoader.js    From canvas with Apache License 2.0 4 votes vote down vote up
GLTFLoader = ( function () {

	function GLTFLoader( manager ) {

		Loader.call( this, manager );

		this.dracoLoader = null;
		this.ddsLoader = null;

	}

	GLTFLoader.prototype = Object.assign( Object.create( Loader.prototype ), {

		constructor: GLTFLoader,

		load: function ( url, onLoad, onProgress, onError ) {

			var scope = this;

			var resourcePath;

			if ( this.resourcePath !== '' ) {

				resourcePath = this.resourcePath;

			} else if ( this.path !== '' ) {

				resourcePath = this.path;

			} else {

				resourcePath = LoaderUtils.extractUrlBase( url );

			}

			// Tells the LoadingManager to track an extra item, which resolves after
			// the model is fully loaded. This means the count of items loaded will
			// be incorrect, but ensures manager.onLoad() does not fire early.
			scope.manager.itemStart( url );

			var _onError = function ( e ) {

				if ( onError ) {

					onError( e );

				} else {

					console.error( e );

				}

				scope.manager.itemError( url );
				scope.manager.itemEnd( url );

			};

			var loader = new FileLoader( scope.manager );

			loader.setPath( this.path );
			loader.setResponseType( 'arraybuffer' );

			if ( scope.crossOrigin === 'use-credentials' ) {

				loader.setWithCredentials( true );

			}

			loader.load( url, function ( data ) {

				try {

					scope.parse( data, resourcePath, function ( gltf ) {

						onLoad( gltf );

						scope.manager.itemEnd( url );

					}, _onError );

				} catch ( e ) {

					_onError( e );

				}

			}, onProgress, _onError );

		},

		setDRACOLoader: function ( dracoLoader ) {

			this.dracoLoader = dracoLoader;
			return this;

		},

		setDDSLoader: function ( ddsLoader ) {

			this.ddsLoader = ddsLoader;
			return this;

		},

		parse: function ( data, path, onLoad, onError ) {

			var content;
			var extensions = {};

			if ( typeof data === 'string' ) {

				content = data;

			} else {

				var magic = LoaderUtils.decodeText( new Uint8Array( data, 0, 4 ) );

				if ( magic === BINARY_EXTENSION_HEADER_MAGIC ) {

					try {

						extensions[ EXTENSIONS.KHR_BINARY_GLTF ] = new GLTFBinaryExtension( data );

					} catch ( error ) {

						if ( onError ) onError( error );
						return;

					}

					content = extensions[ EXTENSIONS.KHR_BINARY_GLTF ].content;

				} else {

					content = LoaderUtils.decodeText( new Uint8Array( data ) );

				}

			}

			var json = JSON.parse( content );

			if ( json.asset === undefined || json.asset.version[ 0 ] < 2 ) {

				if ( onError ) onError( new Error( 'THREE.GLTFLoader: Unsupported asset. glTF versions >=2.0 are supported.' ) );
				return;

			}

			if ( json.extensionsUsed ) {

				for ( var i = 0; i < json.extensionsUsed.length; ++ i ) {

					var extensionName = json.extensionsUsed[ i ];
					var extensionsRequired = json.extensionsRequired || [];

					switch ( extensionName ) {

						case EXTENSIONS.KHR_LIGHTS_PUNCTUAL:
							extensions[ extensionName ] = new GLTFLightsExtension( json );
							break;

						case EXTENSIONS.KHR_MATERIALS_CLEARCOAT:
							extensions[ extensionName ] = new GLTFMaterialsClearcoatExtension();
							break;

						case EXTENSIONS.KHR_MATERIALS_UNLIT:
							extensions[ extensionName ] = new GLTFMaterialsUnlitExtension();
							break;

						case EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS:
							extensions[ extensionName ] = new GLTFMaterialsPbrSpecularGlossinessExtension();
							break;

						case EXTENSIONS.KHR_DRACO_MESH_COMPRESSION:
							extensions[ extensionName ] = new GLTFDracoMeshCompressionExtension( json, this.dracoLoader );
							break;

						case EXTENSIONS.MSFT_TEXTURE_DDS:
							extensions[ extensionName ] = new GLTFTextureDDSExtension( this.ddsLoader );
							break;

						case EXTENSIONS.KHR_TEXTURE_TRANSFORM:
							extensions[ extensionName ] = new GLTFTextureTransformExtension();
							break;

						case EXTENSIONS.KHR_MESH_QUANTIZATION:
							extensions[ extensionName ] = new GLTFMeshQuantizationExtension();
							break;

						default:

							if ( extensionsRequired.indexOf( extensionName ) >= 0 ) {

								console.warn( 'THREE.GLTFLoader: Unknown extension "' + extensionName + '".' );

							}

					}

				}

			}

			var parser = new GLTFParser( json, extensions, {

				path: path || this.resourcePath || '',
				crossOrigin: this.crossOrigin,
				manager: this.manager

			} );

			parser.parse( onLoad, onError );

		}

	} );

	/* GLTFREGISTRY */

	function GLTFRegistry() {

		var objects = {};

		return	{

			get: function ( key ) {

				return objects[ key ];

			},

			add: function ( key, object ) {

				objects[ key ] = object;

			},

			remove: function ( key ) {

				delete objects[ key ];

			},

			removeAll: function () {

				objects = {};

			}

		};

	}

	/*********************************/
	/********** EXTENSIONS ***********/
	/*********************************/

	var EXTENSIONS = {
		KHR_BINARY_GLTF: 'KHR_binary_glTF',
		KHR_DRACO_MESH_COMPRESSION: 'KHR_draco_mesh_compression',
		KHR_LIGHTS_PUNCTUAL: 'KHR_lights_punctual',
		KHR_MATERIALS_CLEARCOAT: 'KHR_materials_clearcoat',
		KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS: 'KHR_materials_pbrSpecularGlossiness',
		KHR_MATERIALS_UNLIT: 'KHR_materials_unlit',
		KHR_TEXTURE_TRANSFORM: 'KHR_texture_transform',
		KHR_MESH_QUANTIZATION: 'KHR_mesh_quantization',
		MSFT_TEXTURE_DDS: 'MSFT_texture_dds'
	};

	/**
	 * DDS Texture Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Vendor/MSFT_texture_dds
	 *
	 */
	function GLTFTextureDDSExtension( ddsLoader ) {

		if ( ! ddsLoader ) {

			throw new Error( 'THREE.GLTFLoader: Attempting to load .dds texture without importing DDSLoader' );

		}

		this.name = EXTENSIONS.MSFT_TEXTURE_DDS;
		this.ddsLoader = ddsLoader;

	}

	/**
	 * Punctual Lights Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
	 */
	function GLTFLightsExtension( json ) {

		this.name = EXTENSIONS.KHR_LIGHTS_PUNCTUAL;

		var extension = ( json.extensions && json.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ] ) || {};
		this.lightDefs = extension.lights || [];

	}

	GLTFLightsExtension.prototype.loadLight = function ( lightIndex ) {

		var lightDef = this.lightDefs[ lightIndex ];
		var lightNode;

		var color = new Color( 0xffffff );
		if ( lightDef.color !== undefined ) color.fromArray( lightDef.color );

		var range = lightDef.range !== undefined ? lightDef.range : 0;

		switch ( lightDef.type ) {

			case 'directional':
				lightNode = new DirectionalLight( color );
				lightNode.target.position.set( 0, 0, - 1 );
				lightNode.add( lightNode.target );
				break;

			case 'point':
				lightNode = new PointLight( color );
				lightNode.distance = range;
				break;

			case 'spot':
				lightNode = new SpotLight( color );
				lightNode.distance = range;
				// Handle spotlight properties.
				lightDef.spot = lightDef.spot || {};
				lightDef.spot.innerConeAngle = lightDef.spot.innerConeAngle !== undefined ? lightDef.spot.innerConeAngle : 0;
				lightDef.spot.outerConeAngle = lightDef.spot.outerConeAngle !== undefined ? lightDef.spot.outerConeAngle : Math.PI / 4.0;
				lightNode.angle = lightDef.spot.outerConeAngle;
				lightNode.penumbra = 1.0 - lightDef.spot.innerConeAngle / lightDef.spot.outerConeAngle;
				lightNode.target.position.set( 0, 0, - 1 );
				lightNode.add( lightNode.target );
				break;

			default:
				throw new Error( 'THREE.GLTFLoader: Unexpected light type, "' + lightDef.type + '".' );

		}

		// Some lights (e.g. spot) default to a position other than the origin. Reset the position
		// here, because node-level parsing will only override position if explicitly specified.
		lightNode.position.set( 0, 0, 0 );

		lightNode.decay = 2;

		if ( lightDef.intensity !== undefined ) lightNode.intensity = lightDef.intensity;

		lightNode.name = lightDef.name || ( 'light_' + lightIndex );

		return Promise.resolve( lightNode );

	};

	/**
	 * Unlit Materials Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_unlit
	 */
	function GLTFMaterialsUnlitExtension() {

		this.name = EXTENSIONS.KHR_MATERIALS_UNLIT;

	}

	GLTFMaterialsUnlitExtension.prototype.getMaterialType = function () {

		return MeshBasicMaterial;

	};

	GLTFMaterialsUnlitExtension.prototype.extendParams = function ( materialParams, materialDef, parser ) {

		var pending = [];

		materialParams.color = new Color( 1.0, 1.0, 1.0 );
		materialParams.opacity = 1.0;

		var metallicRoughness = materialDef.pbrMetallicRoughness;

		if ( metallicRoughness ) {

			if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {

				var array = metallicRoughness.baseColorFactor;

				materialParams.color.fromArray( array );
				materialParams.opacity = array[ 3 ];

			}

			if ( metallicRoughness.baseColorTexture !== undefined ) {

				pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) );

			}

		}

		return Promise.all( pending );

	};

	/**
	 * Clearcoat Materials Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_clearcoat
	 */
	function GLTFMaterialsClearcoatExtension() {

		this.name = EXTENSIONS.KHR_MATERIALS_CLEARCOAT;

	}

	GLTFMaterialsClearcoatExtension.prototype.getMaterialType = function () {

		return MeshPhysicalMaterial;

	};

	GLTFMaterialsClearcoatExtension.prototype.extendParams = function ( materialParams, materialDef, parser ) {

		var pending = [];

		var extension = materialDef.extensions[ this.name ];

		if ( extension.clearcoatFactor !== undefined ) {

			materialParams.clearcoat = extension.clearcoatFactor;

		}

		if ( extension.clearcoatTexture !== undefined ) {

			pending.push( parser.assignTexture( materialParams, 'clearcoatMap', extension.clearcoatTexture ) );

		}

		if ( extension.clearcoatRoughnessFactor !== undefined ) {

			materialParams.clearcoatRoughness = extension.clearcoatRoughnessFactor;

		}

		if ( extension.clearcoatRoughnessTexture !== undefined ) {

			pending.push( parser.assignTexture( materialParams, 'clearcoatRoughnessMap', extension.clearcoatRoughnessTexture ) );

		}

		if ( extension.clearcoatNormalTexture !== undefined ) {

			pending.push( parser.assignTexture( materialParams, 'clearcoatNormalMap', extension.clearcoatNormalTexture ) );

			if ( extension.clearcoatNormalTexture.scale !== undefined ) {

				var scale = extension.clearcoatNormalTexture.scale;

				materialParams.clearcoatNormalScale = new Vector2( scale, scale );

			}

		}

		return Promise.all( pending );

	};

	/* BINARY EXTENSION */
	var BINARY_EXTENSION_HEADER_MAGIC = 'glTF';
	var BINARY_EXTENSION_HEADER_LENGTH = 12;
	var BINARY_EXTENSION_CHUNK_TYPES = { JSON: 0x4E4F534A, BIN: 0x004E4942 };

	function GLTFBinaryExtension( data ) {

		this.name = EXTENSIONS.KHR_BINARY_GLTF;
		this.content = null;
		this.body = null;

		var headerView = new DataView( data, 0, BINARY_EXTENSION_HEADER_LENGTH );

		this.header = {
			magic: LoaderUtils.decodeText( new Uint8Array( data.slice( 0, 4 ) ) ),
			version: headerView.getUint32( 4, true ),
			length: headerView.getUint32( 8, true )
		};

		if ( this.header.magic !== BINARY_EXTENSION_HEADER_MAGIC ) {

			throw new Error( 'THREE.GLTFLoader: Unsupported glTF-Binary header.' );

		} else if ( this.header.version < 2.0 ) {

			throw new Error( 'THREE.GLTFLoader: Legacy binary file detected.' );

		}

		var chunkView = new DataView( data, BINARY_EXTENSION_HEADER_LENGTH );
		var chunkIndex = 0;

		while ( chunkIndex < chunkView.byteLength ) {

			var chunkLength = chunkView.getUint32( chunkIndex, true );
			chunkIndex += 4;

			var chunkType = chunkView.getUint32( chunkIndex, true );
			chunkIndex += 4;

			if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.JSON ) {

				var contentArray = new Uint8Array( data, BINARY_EXTENSION_HEADER_LENGTH + chunkIndex, chunkLength );
				this.content = LoaderUtils.decodeText( contentArray );

			} else if ( chunkType === BINARY_EXTENSION_CHUNK_TYPES.BIN ) {

				var byteOffset = BINARY_EXTENSION_HEADER_LENGTH + chunkIndex;
				this.body = data.slice( byteOffset, byteOffset + chunkLength );

			}

			// Clients must ignore chunks with unknown types.

			chunkIndex += chunkLength;

		}

		if ( this.content === null ) {

			throw new Error( 'THREE.GLTFLoader: JSON content not found.' );

		}

	}

	/**
	 * DRACO Mesh Compression Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_draco_mesh_compression
	 */
	function GLTFDracoMeshCompressionExtension( json, dracoLoader ) {

		if ( ! dracoLoader ) {

			throw new Error( 'THREE.GLTFLoader: No DRACOLoader instance provided.' );

		}

		this.name = EXTENSIONS.KHR_DRACO_MESH_COMPRESSION;
		this.json = json;
		this.dracoLoader = dracoLoader;
		this.dracoLoader.preload();

	}

	GLTFDracoMeshCompressionExtension.prototype.decodePrimitive = function ( primitive, parser ) {

		var json = this.json;
		var dracoLoader = this.dracoLoader;
		var bufferViewIndex = primitive.extensions[ this.name ].bufferView;
		var gltfAttributeMap = primitive.extensions[ this.name ].attributes;
		var threeAttributeMap = {};
		var attributeNormalizedMap = {};
		var attributeTypeMap = {};

		for ( var attributeName in gltfAttributeMap ) {

			var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();

			threeAttributeMap[ threeAttributeName ] = gltfAttributeMap[ attributeName ];

		}

		for ( attributeName in primitive.attributes ) {

			var threeAttributeName = ATTRIBUTES[ attributeName ] || attributeName.toLowerCase();

			if ( gltfAttributeMap[ attributeName ] !== undefined ) {

				var accessorDef = json.accessors[ primitive.attributes[ attributeName ] ];
				var componentType = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];

				attributeTypeMap[ threeAttributeName ] = componentType;
				attributeNormalizedMap[ threeAttributeName ] = accessorDef.normalized === true;

			}

		}

		return parser.getDependency( 'bufferView', bufferViewIndex ).then( function ( bufferView ) {

			return new Promise( function ( resolve ) {

				dracoLoader.decodeDracoFile( bufferView, function ( geometry ) {

					for ( var attributeName in geometry.attributes ) {

						var attribute = geometry.attributes[ attributeName ];
						var normalized = attributeNormalizedMap[ attributeName ];

						if ( normalized !== undefined ) attribute.normalized = normalized;

					}

					resolve( geometry );

				}, threeAttributeMap, attributeTypeMap );

			} );

		} );

	};

	/**
	 * Texture Transform Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_texture_transform
	 */
	function GLTFTextureTransformExtension() {

		this.name = EXTENSIONS.KHR_TEXTURE_TRANSFORM;

	}

	GLTFTextureTransformExtension.prototype.extendTexture = function ( texture, transform ) {

		texture = texture.clone();

		if ( transform.offset !== undefined ) {

			texture.offset.fromArray( transform.offset );

		}

		if ( transform.rotation !== undefined ) {

			texture.rotation = transform.rotation;

		}

		if ( transform.scale !== undefined ) {

			texture.repeat.fromArray( transform.scale );

		}

		if ( transform.texCoord !== undefined ) {

			console.warn( 'THREE.GLTFLoader: Custom UV sets in "' + this.name + '" extension not yet supported.' );

		}

		texture.needsUpdate = true;

		return texture;

	};

	/**
	 * Specular-Glossiness Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_materials_pbrSpecularGlossiness
	 */

	/**
	 * A sub class of StandardMaterial with some of the functionality
	 * changed via the `onBeforeCompile` callback
	 * @pailhead
	 */

	function GLTFMeshStandardSGMaterial( params ) {

		MeshStandardMaterial.call( this );

		this.isGLTFSpecularGlossinessMaterial = true;

		//various chunks that need replacing
		var specularMapParsFragmentChunk = [
			'#ifdef USE_SPECULARMAP',
			'	uniform sampler2D specularMap;',
			'#endif'
		].join( '\n' );

		var glossinessMapParsFragmentChunk = [
			'#ifdef USE_GLOSSINESSMAP',
			'	uniform sampler2D glossinessMap;',
			'#endif'
		].join( '\n' );

		var specularMapFragmentChunk = [
			'vec3 specularFactor = specular;',
			'#ifdef USE_SPECULARMAP',
			'	vec4 texelSpecular = texture2D( specularMap, vUv );',
			'	texelSpecular = sRGBToLinear( texelSpecular );',
			'	// reads channel RGB, compatible with a glTF Specular-Glossiness (RGBA) texture',
			'	specularFactor *= texelSpecular.rgb;',
			'#endif'
		].join( '\n' );

		var glossinessMapFragmentChunk = [
			'float glossinessFactor = glossiness;',
			'#ifdef USE_GLOSSINESSMAP',
			'	vec4 texelGlossiness = texture2D( glossinessMap, vUv );',
			'	// reads channel A, compatible with a glTF Specular-Glossiness (RGBA) texture',
			'	glossinessFactor *= texelGlossiness.a;',
			'#endif'
		].join( '\n' );

		var lightPhysicalFragmentChunk = [
			'PhysicalMaterial material;',
			'material.diffuseColor = diffuseColor.rgb;',
			'vec3 dxy = max( abs( dFdx( geometryNormal ) ), abs( dFdy( geometryNormal ) ) );',
			'float geometryRoughness = max( max( dxy.x, dxy.y ), dxy.z );',
			'material.specularRoughness = max( 1.0 - glossinessFactor, 0.0525 );// 0.0525 corresponds to the base mip of a 256 cubemap.',
			'material.specularRoughness += geometryRoughness;',
			'material.specularRoughness = min( material.specularRoughness, 1.0 );',
			'material.specularColor = specularFactor.rgb;',
		].join( '\n' );

		var uniforms = {
			specular: { value: new Color().setHex( 0xffffff ) },
			glossiness: { value: 1 },
			specularMap: { value: null },
			glossinessMap: { value: null }
		};

		this._extraUniforms = uniforms;

		// please see #14031 or #13198 for an alternate approach
		this.onBeforeCompile = function ( shader ) {

			for ( var uniformName in uniforms ) {

				shader.uniforms[ uniformName ] = uniforms[ uniformName ];

			}

			shader.fragmentShader = shader.fragmentShader.replace( 'uniform float roughness;', 'uniform vec3 specular;' );
			shader.fragmentShader = shader.fragmentShader.replace( 'uniform float metalness;', 'uniform float glossiness;' );
			shader.fragmentShader = shader.fragmentShader.replace( '#include <roughnessmap_pars_fragment>', specularMapParsFragmentChunk );
			shader.fragmentShader = shader.fragmentShader.replace( '#include <metalnessmap_pars_fragment>', glossinessMapParsFragmentChunk );
			shader.fragmentShader = shader.fragmentShader.replace( '#include <roughnessmap_fragment>', specularMapFragmentChunk );
			shader.fragmentShader = shader.fragmentShader.replace( '#include <metalnessmap_fragment>', glossinessMapFragmentChunk );
			shader.fragmentShader = shader.fragmentShader.replace( '#include <lights_physical_fragment>', lightPhysicalFragmentChunk );

		};

		/*eslint-disable*/
		Object.defineProperties(
			this,
			{
				specular: {
					get: function () { return uniforms.specular.value; },
					set: function ( v ) { uniforms.specular.value = v; }
				},
				specularMap: {
					get: function () { return uniforms.specularMap.value; },
					set: function ( v ) { uniforms.specularMap.value = v; }
				},
				glossiness: {
					get: function () { return uniforms.glossiness.value; },
					set: function ( v ) { uniforms.glossiness.value = v; }
				},
				glossinessMap: {
					get: function () { return uniforms.glossinessMap.value; },
					set: function ( v ) {

						uniforms.glossinessMap.value = v;
						//how about something like this - @pailhead
						if ( v ) {

							this.defines.USE_GLOSSINESSMAP = '';
							// set USE_ROUGHNESSMAP to enable vUv
							this.defines.USE_ROUGHNESSMAP = '';

						} else {

							delete this.defines.USE_ROUGHNESSMAP;
							delete this.defines.USE_GLOSSINESSMAP;

						}

					}
				}
			}
		);

		/*eslint-enable*/
		delete this.metalness;
		delete this.roughness;
		delete this.metalnessMap;
		delete this.roughnessMap;

		this.setValues( params );

	}

	GLTFMeshStandardSGMaterial.prototype = Object.create( MeshStandardMaterial.prototype );
	GLTFMeshStandardSGMaterial.prototype.constructor = GLTFMeshStandardSGMaterial;

	GLTFMeshStandardSGMaterial.prototype.copy = function ( source ) {

		MeshStandardMaterial.prototype.copy.call( this, source );
		this.specularMap = source.specularMap;
		this.specular.copy( source.specular );
		this.glossinessMap = source.glossinessMap;
		this.glossiness = source.glossiness;
		delete this.metalness;
		delete this.roughness;
		delete this.metalnessMap;
		delete this.roughnessMap;
		return this;

	};

	function GLTFMaterialsPbrSpecularGlossinessExtension() {

		return {

			name: EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS,

			specularGlossinessParams: [
				'color',
				'map',
				'lightMap',
				'lightMapIntensity',
				'aoMap',
				'aoMapIntensity',
				'emissive',
				'emissiveIntensity',
				'emissiveMap',
				'bumpMap',
				'bumpScale',
				'normalMap',
				'normalMapType',
				'displacementMap',
				'displacementScale',
				'displacementBias',
				'specularMap',
				'specular',
				'glossinessMap',
				'glossiness',
				'alphaMap',
				'envMap',
				'envMapIntensity',
				'refractionRatio',
			],

			getMaterialType: function () {

				return GLTFMeshStandardSGMaterial;

			},

			extendParams: function ( materialParams, materialDef, parser ) {

				var pbrSpecularGlossiness = materialDef.extensions[ this.name ];

				materialParams.color = new Color( 1.0, 1.0, 1.0 );
				materialParams.opacity = 1.0;

				var pending = [];

				if ( Array.isArray( pbrSpecularGlossiness.diffuseFactor ) ) {

					var array = pbrSpecularGlossiness.diffuseFactor;

					materialParams.color.fromArray( array );
					materialParams.opacity = array[ 3 ];

				}

				if ( pbrSpecularGlossiness.diffuseTexture !== undefined ) {

					pending.push( parser.assignTexture( materialParams, 'map', pbrSpecularGlossiness.diffuseTexture ) );

				}

				materialParams.emissive = new Color( 0.0, 0.0, 0.0 );
				materialParams.glossiness = pbrSpecularGlossiness.glossinessFactor !== undefined ? pbrSpecularGlossiness.glossinessFactor : 1.0;
				materialParams.specular = new Color( 1.0, 1.0, 1.0 );

				if ( Array.isArray( pbrSpecularGlossiness.specularFactor ) ) {

					materialParams.specular.fromArray( pbrSpecularGlossiness.specularFactor );

				}

				if ( pbrSpecularGlossiness.specularGlossinessTexture !== undefined ) {

					var specGlossMapDef = pbrSpecularGlossiness.specularGlossinessTexture;
					pending.push( parser.assignTexture( materialParams, 'glossinessMap', specGlossMapDef ) );
					pending.push( parser.assignTexture( materialParams, 'specularMap', specGlossMapDef ) );

				}

				return Promise.all( pending );

			},

			createMaterial: function ( materialParams ) {

				var material = new GLTFMeshStandardSGMaterial( materialParams );
				material.fog = true;

				material.color = materialParams.color;

				material.map = materialParams.map === undefined ? null : materialParams.map;

				material.lightMap = null;
				material.lightMapIntensity = 1.0;

				material.aoMap = materialParams.aoMap === undefined ? null : materialParams.aoMap;
				material.aoMapIntensity = 1.0;

				material.emissive = materialParams.emissive;
				material.emissiveIntensity = 1.0;
				material.emissiveMap = materialParams.emissiveMap === undefined ? null : materialParams.emissiveMap;

				material.bumpMap = materialParams.bumpMap === undefined ? null : materialParams.bumpMap;
				material.bumpScale = 1;

				material.normalMap = materialParams.normalMap === undefined ? null : materialParams.normalMap;
				material.normalMapType = TangentSpaceNormalMap;

				if ( materialParams.normalScale ) material.normalScale = materialParams.normalScale;

				material.displacementMap = null;
				material.displacementScale = 1;
				material.displacementBias = 0;

				material.specularMap = materialParams.specularMap === undefined ? null : materialParams.specularMap;
				material.specular = materialParams.specular;

				material.glossinessMap = materialParams.glossinessMap === undefined ? null : materialParams.glossinessMap;
				material.glossiness = materialParams.glossiness;

				material.alphaMap = null;

				material.envMap = materialParams.envMap === undefined ? null : materialParams.envMap;
				material.envMapIntensity = 1.0;

				material.refractionRatio = 0.98;

				return material;

			},

		};

	}

	/**
	 * Mesh Quantization Extension
	 *
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_mesh_quantization
	 */
	function GLTFMeshQuantizationExtension() {

		this.name = EXTENSIONS.KHR_MESH_QUANTIZATION;

	}

	/*********************************/
	/********** INTERPOLATION ********/
	/*********************************/

	// Spline Interpolation
	// Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#appendix-c-spline-interpolation
	function GLTFCubicSplineInterpolant( parameterPositions, sampleValues, sampleSize, resultBuffer ) {

		Interpolant.call( this, parameterPositions, sampleValues, sampleSize, resultBuffer );

	}

	GLTFCubicSplineInterpolant.prototype = Object.create( Interpolant.prototype );
	GLTFCubicSplineInterpolant.prototype.constructor = GLTFCubicSplineInterpolant;

	GLTFCubicSplineInterpolant.prototype.copySampleValue_ = function ( index ) {

		// Copies a sample value to the result buffer. See description of glTF
		// CUBICSPLINE values layout in interpolate_() function below.

		var result = this.resultBuffer,
			values = this.sampleValues,
			valueSize = this.valueSize,
			offset = index * valueSize * 3 + valueSize;

		for ( var i = 0; i !== valueSize; i ++ ) {

			result[ i ] = values[ offset + i ];

		}

		return result;

	};

	GLTFCubicSplineInterpolant.prototype.beforeStart_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;

	GLTFCubicSplineInterpolant.prototype.afterEnd_ = GLTFCubicSplineInterpolant.prototype.copySampleValue_;

	GLTFCubicSplineInterpolant.prototype.interpolate_ = function ( i1, t0, t, t1 ) {

		var result = this.resultBuffer;
		var values = this.sampleValues;
		var stride = this.valueSize;

		var stride2 = stride * 2;
		var stride3 = stride * 3;

		var td = t1 - t0;

		var p = ( t - t0 ) / td;
		var pp = p * p;
		var ppp = pp * p;

		var offset1 = i1 * stride3;
		var offset0 = offset1 - stride3;

		var s2 = - 2 * ppp + 3 * pp;
		var s3 = ppp - pp;
		var s0 = 1 - s2;
		var s1 = s3 - pp + p;

		// Layout of keyframe output values for CUBICSPLINE animations:
		//   [ inTangent_1, splineVertex_1, outTangent_1, inTangent_2, splineVertex_2, ... ]
		for ( var i = 0; i !== stride; i ++ ) {

			var p0 = values[ offset0 + i + stride ]; // splineVertex_k
			var m0 = values[ offset0 + i + stride2 ] * td; // outTangent_k * (t_k+1 - t_k)
			var p1 = values[ offset1 + i + stride ]; // splineVertex_k+1
			var m1 = values[ offset1 + i ] * td; // inTangent_k+1 * (t_k+1 - t_k)

			result[ i ] = s0 * p0 + s1 * m0 + s2 * p1 + s3 * m1;

		}

		return result;

	};

	/*********************************/
	/********** INTERNALS ************/
	/*********************************/

	/* CONSTANTS */

	var WEBGL_CONSTANTS = {
		FLOAT: 5126,
		//FLOAT_MAT2: 35674,
		FLOAT_MAT3: 35675,
		FLOAT_MAT4: 35676,
		FLOAT_VEC2: 35664,
		FLOAT_VEC3: 35665,
		FLOAT_VEC4: 35666,
		LINEAR: 9729,
		REPEAT: 10497,
		SAMPLER_2D: 35678,
		POINTS: 0,
		LINES: 1,
		LINE_LOOP: 2,
		LINE_STRIP: 3,
		TRIANGLES: 4,
		TRIANGLE_STRIP: 5,
		TRIANGLE_FAN: 6,
		UNSIGNED_BYTE: 5121,
		UNSIGNED_SHORT: 5123
	};

	var WEBGL_COMPONENT_TYPES = {
		5120: Int8Array,
		5121: Uint8Array,
		5122: Int16Array,
		5123: Uint16Array,
		5125: Uint32Array,
		5126: Float32Array
	};

	var WEBGL_FILTERS = {
		9728: NearestFilter,
		9729: LinearFilter,
		9984: NearestMipmapNearestFilter,
		9985: LinearMipmapNearestFilter,
		9986: NearestMipmapLinearFilter,
		9987: LinearMipmapLinearFilter
	};

	var WEBGL_WRAPPINGS = {
		33071: ClampToEdgeWrapping,
		33648: MirroredRepeatWrapping,
		10497: RepeatWrapping
	};

	var WEBGL_TYPE_SIZES = {
		'SCALAR': 1,
		'VEC2': 2,
		'VEC3': 3,
		'VEC4': 4,
		'MAT2': 4,
		'MAT3': 9,
		'MAT4': 16
	};

	var ATTRIBUTES = {
		POSITION: 'position',
		NORMAL: 'normal',
		TANGENT: 'tangent',
		TEXCOORD_0: 'uv',
		TEXCOORD_1: 'uv2',
		COLOR_0: 'color',
		WEIGHTS_0: 'skinWeight',
		JOINTS_0: 'skinIndex',
	};

	var PATH_PROPERTIES = {
		scale: 'scale',
		translation: 'position',
		rotation: 'quaternion',
		weights: 'morphTargetInfluences'
	};

	var INTERPOLATION = {
		CUBICSPLINE: undefined, // We use a custom interpolant (GLTFCubicSplineInterpolation) for CUBICSPLINE tracks. Each
		                        // keyframe track will be initialized with a default interpolation type, then modified.
		LINEAR: InterpolateLinear,
		STEP: InterpolateDiscrete
	};

	var ALPHA_MODES = {
		OPAQUE: 'OPAQUE',
		MASK: 'MASK',
		BLEND: 'BLEND'
	};

	var MIME_TYPE_FORMATS = {
		'image/png': RGBAFormat,
		'image/jpeg': RGBFormat
	};

	/* UTILITY FUNCTIONS */

	function resolveURL( url, path ) {

		// Invalid URL
		if ( typeof url !== 'string' || url === '' ) return '';

		// Host Relative URL
		if ( /^https?:\/\//i.test( path ) && /^\//.test( url ) ) {

			path = path.replace( /(^https?:\/\/[^\/]+).*/i, '$1' );

		}

		// Absolute URL http://,https://,//
		if ( /^(https?:)?\/\//i.test( url ) ) return url;

		// Data URI
		if ( /^data:.*,.*$/i.test( url ) ) return url;

		// Blob URL
		if ( /^blob:.*$/i.test( url ) ) return url;

		// Relative URL
		return path + url;

	}

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#default-material
	 */
	function createDefaultMaterial( cache ) {

		if ( cache[ 'DefaultMaterial' ] === undefined ) {

			cache[ 'DefaultMaterial' ] = new MeshStandardMaterial( {
				color: 0xFFFFFF,
				emissive: 0x000000,
				metalness: 1,
				roughness: 1,
				transparent: false,
				depthTest: true,
				side: FrontSide
			} );

		}

		return cache[ 'DefaultMaterial' ];

	}

	function addUnknownExtensionsToUserData( knownExtensions, object, objectDef ) {

		// Add unknown glTF extensions to an object's userData.

		for ( var name in objectDef.extensions ) {

			if ( knownExtensions[ name ] === undefined ) {

				object.userData.gltfExtensions = object.userData.gltfExtensions || {};
				object.userData.gltfExtensions[ name ] = objectDef.extensions[ name ];

			}

		}

	}

	/**
	 * @param {Object3D|Material|BufferGeometry} object
	 * @param {GLTF.definition} gltfDef
	 */
	function assignExtrasToUserData( object, gltfDef ) {

		if ( gltfDef.extras !== undefined ) {

			if ( typeof gltfDef.extras === 'object' ) {

				Object.assign( object.userData, gltfDef.extras );

			} else {

				console.warn( 'THREE.GLTFLoader: Ignoring primitive type .extras, ' + gltfDef.extras );

			}

		}

	}

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#morph-targets
	 *
	 * @param {BufferGeometry} geometry
	 * @param {Array<GLTF.Target>} targets
	 * @param {GLTFParser} parser
	 * @return {Promise<BufferGeometry>}
	 */
	function addMorphTargets( geometry, targets, parser ) {

		var hasMorphPosition = false;
		var hasMorphNormal = false;

		for ( var i = 0, il = targets.length; i < il; i ++ ) {

			var target = targets[ i ];

			if ( target.POSITION !== undefined ) hasMorphPosition = true;
			if ( target.NORMAL !== undefined ) hasMorphNormal = true;

			if ( hasMorphPosition && hasMorphNormal ) break;

		}

		if ( ! hasMorphPosition && ! hasMorphNormal ) return Promise.resolve( geometry );

		var pendingPositionAccessors = [];
		var pendingNormalAccessors = [];

		for ( var i = 0, il = targets.length; i < il; i ++ ) {

			var target = targets[ i ];

			if ( hasMorphPosition ) {

				var pendingAccessor = target.POSITION !== undefined
					? parser.getDependency( 'accessor', target.POSITION )
					: geometry.attributes.position;

				pendingPositionAccessors.push( pendingAccessor );

			}

			if ( hasMorphNormal ) {

				var pendingAccessor = target.NORMAL !== undefined
					? parser.getDependency( 'accessor', target.NORMAL )
					: geometry.attributes.normal;

				pendingNormalAccessors.push( pendingAccessor );

			}

		}

		return Promise.all( [
			Promise.all( pendingPositionAccessors ),
			Promise.all( pendingNormalAccessors )
		] ).then( function ( accessors ) {

			var morphPositions = accessors[ 0 ];
			var morphNormals = accessors[ 1 ];

			if ( hasMorphPosition ) geometry.morphAttributes.position = morphPositions;
			if ( hasMorphNormal ) geometry.morphAttributes.normal = morphNormals;
			geometry.morphTargetsRelative = true;

			return geometry;

		} );

	}

	/**
	 * @param {Mesh} mesh
	 * @param {GLTF.Mesh} meshDef
	 */
	function updateMorphTargets( mesh, meshDef ) {

		mesh.updateMorphTargets();

		if ( meshDef.weights !== undefined ) {

			for ( var i = 0, il = meshDef.weights.length; i < il; i ++ ) {

				mesh.morphTargetInfluences[ i ] = meshDef.weights[ i ];

			}

		}

		// .extras has user-defined data, so check that .extras.targetNames is an array.
		if ( meshDef.extras && Array.isArray( meshDef.extras.targetNames ) ) {

			var targetNames = meshDef.extras.targetNames;

			if ( mesh.morphTargetInfluences.length === targetNames.length ) {

				mesh.morphTargetDictionary = {};

				for ( var i = 0, il = targetNames.length; i < il; i ++ ) {

					mesh.morphTargetDictionary[ targetNames[ i ] ] = i;

				}

			} else {

				console.warn( 'THREE.GLTFLoader: Invalid extras.targetNames length. Ignoring names.' );

			}

		}

	}

	function createPrimitiveKey( primitiveDef ) {

		var dracoExtension = primitiveDef.extensions && primitiveDef.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ];
		var geometryKey;

		if ( dracoExtension ) {

			geometryKey = 'draco:' + dracoExtension.bufferView
				+ ':' + dracoExtension.indices
				+ ':' + createAttributesKey( dracoExtension.attributes );

		} else {

			geometryKey = primitiveDef.indices + ':' + createAttributesKey( primitiveDef.attributes ) + ':' + primitiveDef.mode;

		}

		return geometryKey;

	}

	function createAttributesKey( attributes ) {

		var attributesKey = '';

		var keys = Object.keys( attributes ).sort();

		for ( var i = 0, il = keys.length; i < il; i ++ ) {

			attributesKey += keys[ i ] + ':' + attributes[ keys[ i ] ] + ';';

		}

		return attributesKey;

	}

	/* GLTF PARSER */

	function GLTFParser( json, extensions, options ) {

		this.json = json || {};
		this.extensions = extensions || {};
		this.options = options || {};

		// loader object cache
		this.cache = new GLTFRegistry();

		// BufferGeometry caching
		this.primitiveCache = {};

		this.textureLoader = new TextureLoader( this.options.manager );
		this.textureLoader.setCrossOrigin( this.options.crossOrigin );

		this.fileLoader = new FileLoader( this.options.manager );
		this.fileLoader.setResponseType( 'arraybuffer' );

		if ( this.options.crossOrigin === 'use-credentials' ) {

			this.fileLoader.setWithCredentials( true );

		}

	}

	GLTFParser.prototype.parse = function ( onLoad, onError ) {

		var parser = this;
		var json = this.json;
		var extensions = this.extensions;

		// Clear the loader cache
		this.cache.removeAll();

		// Mark the special nodes/meshes in json for efficient parse
		this.markDefs();

		Promise.all( [

			this.getDependencies( 'scene' ),
			this.getDependencies( 'animation' ),
			this.getDependencies( 'camera' ),

		] ).then( function ( dependencies ) {

			var result = {
				scene: dependencies[ 0 ][ json.scene || 0 ],
				scenes: dependencies[ 0 ],
				animations: dependencies[ 1 ],
				cameras: dependencies[ 2 ],
				asset: json.asset,
				parser: parser,
				userData: {}
			};

			addUnknownExtensionsToUserData( extensions, result, json );

			assignExtrasToUserData( result, json );

			onLoad( result );

		} ).catch( onError );

	};

	/**
	 * Marks the special nodes/meshes in json for efficient parse.
	 */
	GLTFParser.prototype.markDefs = function () {

		var nodeDefs = this.json.nodes || [];
		var skinDefs = this.json.skins || [];
		var meshDefs = this.json.meshes || [];

		var meshReferences = {};
		var meshUses = {};

		// Nothing in the node definition indicates whether it is a Bone or an
		// Object3D. Use the skins' joint references to mark bones.
		for ( var skinIndex = 0, skinLength = skinDefs.length; skinIndex < skinLength; skinIndex ++ ) {

			var joints = skinDefs[ skinIndex ].joints;

			for ( var i = 0, il = joints.length; i < il; i ++ ) {

				nodeDefs[ joints[ i ] ].isBone = true;

			}

		}

		// Meshes can (and should) be reused by multiple nodes in a glTF asset. To
		// avoid having more than one Mesh with the same name, count
		// references and rename instances below.
		//
		// Example: CesiumMilkTruck sample model reuses "Wheel" meshes.
		for ( var nodeIndex = 0, nodeLength = nodeDefs.length; nodeIndex < nodeLength; nodeIndex ++ ) {

			var nodeDef = nodeDefs[ nodeIndex ];

			if ( nodeDef.mesh !== undefined ) {

				if ( meshReferences[ nodeDef.mesh ] === undefined ) {

					meshReferences[ nodeDef.mesh ] = meshUses[ nodeDef.mesh ] = 0;

				}

				meshReferences[ nodeDef.mesh ] ++;

				// Nothing in the mesh definition indicates whether it is
				// a SkinnedMesh or Mesh. Use the node's mesh reference
				// to mark SkinnedMesh if node has skin.
				if ( nodeDef.skin !== undefined ) {

					meshDefs[ nodeDef.mesh ].isSkinnedMesh = true;

				}

			}

		}

		this.json.meshReferences = meshReferences;
		this.json.meshUses = meshUses;

	};

	/**
	 * Requests the specified dependency asynchronously, with caching.
	 * @param {string} type
	 * @param {number} index
	 * @return {Promise<Object3D|Material|THREE.Texture|AnimationClip|ArrayBuffer|Object>}
	 */
	GLTFParser.prototype.getDependency = function ( type, index ) {

		var cacheKey = type + ':' + index;
		var dependency = this.cache.get( cacheKey );

		if ( ! dependency ) {

			switch ( type ) {

				case 'scene':
					dependency = this.loadScene( index );
					break;

				case 'node':
					dependency = this.loadNode( index );
					break;

				case 'mesh':
					dependency = this.loadMesh( index );
					break;

				case 'accessor':
					dependency = this.loadAccessor( index );
					break;

				case 'bufferView':
					dependency = this.loadBufferView( index );
					break;

				case 'buffer':
					dependency = this.loadBuffer( index );
					break;

				case 'material':
					dependency = this.loadMaterial( index );
					break;

				case 'texture':
					dependency = this.loadTexture( index );
					break;

				case 'skin':
					dependency = this.loadSkin( index );
					break;

				case 'animation':
					dependency = this.loadAnimation( index );
					break;

				case 'camera':
					dependency = this.loadCamera( index );
					break;

				case 'light':
					dependency = this.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].loadLight( index );
					break;

				default:
					throw new Error( 'Unknown type: ' + type );

			}

			this.cache.add( cacheKey, dependency );

		}

		return dependency;

	};

	/**
	 * Requests all dependencies of the specified type asynchronously, with caching.
	 * @param {string} type
	 * @return {Promise<Array<Object>>}
	 */
	GLTFParser.prototype.getDependencies = function ( type ) {

		var dependencies = this.cache.get( type );

		if ( ! dependencies ) {

			var parser = this;
			var defs = this.json[ type + ( type === 'mesh' ? 'es' : 's' ) ] || [];

			dependencies = Promise.all( defs.map( function ( def, index ) {

				return parser.getDependency( type, index );

			} ) );

			this.cache.add( type, dependencies );

		}

		return dependencies;

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
	 * @param {number} bufferIndex
	 * @return {Promise<ArrayBuffer>}
	 */
	GLTFParser.prototype.loadBuffer = function ( bufferIndex ) {

		var bufferDef = this.json.buffers[ bufferIndex ];
		var loader = this.fileLoader;

		if ( bufferDef.type && bufferDef.type !== 'arraybuffer' ) {

			throw new Error( 'THREE.GLTFLoader: ' + bufferDef.type + ' buffer type is not supported.' );

		}

		// If present, GLB container is required to be the first buffer.
		if ( bufferDef.uri === undefined && bufferIndex === 0 ) {

			return Promise.resolve( this.extensions[ EXTENSIONS.KHR_BINARY_GLTF ].body );

		}

		var options = this.options;

		return new Promise( function ( resolve, reject ) {

			loader.load( resolveURL( bufferDef.uri, options.path ), resolve, undefined, function () {

				reject( new Error( 'THREE.GLTFLoader: Failed to load buffer "' + bufferDef.uri + '".' ) );

			} );

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#buffers-and-buffer-views
	 * @param {number} bufferViewIndex
	 * @return {Promise<ArrayBuffer>}
	 */
	GLTFParser.prototype.loadBufferView = function ( bufferViewIndex ) {

		var bufferViewDef = this.json.bufferViews[ bufferViewIndex ];

		return this.getDependency( 'buffer', bufferViewDef.buffer ).then( function ( buffer ) {

			var byteLength = bufferViewDef.byteLength || 0;
			var byteOffset = bufferViewDef.byteOffset || 0;
			return buffer.slice( byteOffset, byteOffset + byteLength );

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#accessors
	 * @param {number} accessorIndex
	 * @return {Promise<BufferAttribute|InterleavedBufferAttribute>}
	 */
	GLTFParser.prototype.loadAccessor = function ( accessorIndex ) {

		var parser = this;
		var json = this.json;

		var accessorDef = this.json.accessors[ accessorIndex ];

		if ( accessorDef.bufferView === undefined && accessorDef.sparse === undefined ) {

			// Ignore empty accessors, which may be used to declare runtime
			// information about attributes coming from another source (e.g. Draco
			// compression extension).
			return Promise.resolve( null );

		}

		var pendingBufferViews = [];

		if ( accessorDef.bufferView !== undefined ) {

			pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.bufferView ) );

		} else {

			pendingBufferViews.push( null );

		}

		if ( accessorDef.sparse !== undefined ) {

			pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.indices.bufferView ) );
			pendingBufferViews.push( this.getDependency( 'bufferView', accessorDef.sparse.values.bufferView ) );

		}

		return Promise.all( pendingBufferViews ).then( function ( bufferViews ) {

			var bufferView = bufferViews[ 0 ];

			var itemSize = WEBGL_TYPE_SIZES[ accessorDef.type ];
			var TypedArray = WEBGL_COMPONENT_TYPES[ accessorDef.componentType ];

			// For VEC3: itemSize is 3, elementBytes is 4, itemBytes is 12.
			var elementBytes = TypedArray.BYTES_PER_ELEMENT;
			var itemBytes = elementBytes * itemSize;
			var byteOffset = accessorDef.byteOffset || 0;
			var byteStride = accessorDef.bufferView !== undefined ? json.bufferViews[ accessorDef.bufferView ].byteStride : undefined;
			var normalized = accessorDef.normalized === true;
			var array, bufferAttribute;

			// The buffer is not interleaved if the stride is the item size in bytes.
			if ( byteStride && byteStride !== itemBytes ) {

				// Each "slice" of the buffer, as defined by 'count' elements of 'byteStride' bytes, gets its own InterleavedBuffer
				// This makes sure that IBA.count reflects accessor.count properly
				var ibSlice = Math.floor( byteOffset / byteStride );
				var ibCacheKey = 'InterleavedBuffer:' + accessorDef.bufferView + ':' + accessorDef.componentType + ':' + ibSlice + ':' + accessorDef.count;
				var ib = parser.cache.get( ibCacheKey );

				if ( ! ib ) {

					array = new TypedArray( bufferView, ibSlice * byteStride, accessorDef.count * byteStride / elementBytes );

					// Integer parameters to IB/IBA are in array elements, not bytes.
					ib = new InterleavedBuffer( array, byteStride / elementBytes );

					parser.cache.add( ibCacheKey, ib );

				}

				bufferAttribute = new InterleavedBufferAttribute( ib, itemSize, ( byteOffset % byteStride ) / elementBytes, normalized );

			} else {

				if ( bufferView === null ) {

					array = new TypedArray( accessorDef.count * itemSize );

				} else {

					array = new TypedArray( bufferView, byteOffset, accessorDef.count * itemSize );

				}

				bufferAttribute = new BufferAttribute( array, itemSize, normalized );

			}

			// https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#sparse-accessors
			if ( accessorDef.sparse !== undefined ) {

				var itemSizeIndices = WEBGL_TYPE_SIZES.SCALAR;
				var TypedArrayIndices = WEBGL_COMPONENT_TYPES[ accessorDef.sparse.indices.componentType ];

				var byteOffsetIndices = accessorDef.sparse.indices.byteOffset || 0;
				var byteOffsetValues = accessorDef.sparse.values.byteOffset || 0;

				var sparseIndices = new TypedArrayIndices( bufferViews[ 1 ], byteOffsetIndices, accessorDef.sparse.count * itemSizeIndices );
				var sparseValues = new TypedArray( bufferViews[ 2 ], byteOffsetValues, accessorDef.sparse.count * itemSize );

				if ( bufferView !== null ) {

					// Avoid modifying the original ArrayBuffer, if the bufferView wasn't initialized with zeroes.
					bufferAttribute = new BufferAttribute( bufferAttribute.array.slice(), bufferAttribute.itemSize, bufferAttribute.normalized );

				}

				for ( var i = 0, il = sparseIndices.length; i < il; i ++ ) {

					var index = sparseIndices[ i ];

					bufferAttribute.setX( index, sparseValues[ i * itemSize ] );
					if ( itemSize >= 2 ) bufferAttribute.setY( index, sparseValues[ i * itemSize + 1 ] );
					if ( itemSize >= 3 ) bufferAttribute.setZ( index, sparseValues[ i * itemSize + 2 ] );
					if ( itemSize >= 4 ) bufferAttribute.setW( index, sparseValues[ i * itemSize + 3 ] );
					if ( itemSize >= 5 ) throw new Error( 'THREE.GLTFLoader: Unsupported itemSize in sparse BufferAttribute.' );

				}

			}

			return bufferAttribute;

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#textures
	 * @param {number} textureIndex
	 * @return {Promise<THREE.Texture>}
	 */
	GLTFParser.prototype.loadTexture = function ( textureIndex ) {

		var parser = this;
		var json = this.json;
		var options = this.options;
		var textureLoader = this.textureLoader;

		var URL = self.URL || self.webkitURL;

		var textureDef = json.textures[ textureIndex ];

		var textureExtensions = textureDef.extensions || {};

		var source;

		if ( textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ] ) {

			source = json.images[ textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].source ];

		} else {

			source = json.images[ textureDef.source ];

		}

		var sourceURI = source.uri;
		var isObjectURL = false;

		if ( source.bufferView !== undefined ) {

			// Load binary image data from bufferView, if provided.

			sourceURI = parser.getDependency( 'bufferView', source.bufferView ).then( function ( bufferView ) {

				isObjectURL = true;
				var blob = new Blob( [ bufferView ], { type: source.mimeType } );
				sourceURI = URL.createObjectURL( blob );
				return sourceURI;

			} );

		}

		return Promise.resolve( sourceURI ).then( function ( sourceURI ) {

			// Load Texture resource.

			var loader = options.manager.getHandler( sourceURI );

			if ( ! loader ) {

				loader = textureExtensions[ EXTENSIONS.MSFT_TEXTURE_DDS ]
					? parser.extensions[ EXTENSIONS.MSFT_TEXTURE_DDS ].ddsLoader
					: textureLoader;

			}

			return new Promise( function ( resolve, reject ) {

				loader.load( resolveURL( sourceURI, options.path ), resolve, undefined, reject );

			} );

		} ).then( function ( texture ) {

			// Clean up resources and configure Texture.

			if ( isObjectURL === true ) {

				URL.revokeObjectURL( sourceURI );

			}

			texture.flipY = false;

			if ( textureDef.name ) texture.name = textureDef.name;

			// Ignore unknown mime types, like DDS files.
			if ( source.mimeType in MIME_TYPE_FORMATS ) {

				texture.format = MIME_TYPE_FORMATS[ source.mimeType ];

			}

			var samplers = json.samplers || {};
			var sampler = samplers[ textureDef.sampler ] || {};

			texture.magFilter = WEBGL_FILTERS[ sampler.magFilter ] || LinearFilter;
			texture.minFilter = WEBGL_FILTERS[ sampler.minFilter ] || LinearMipmapLinearFilter;
			texture.wrapS = WEBGL_WRAPPINGS[ sampler.wrapS ] || RepeatWrapping;
			texture.wrapT = WEBGL_WRAPPINGS[ sampler.wrapT ] || RepeatWrapping;

			return texture;

		} );

	};

	/**
	 * Asynchronously assigns a texture to the given material parameters.
	 * @param {Object} materialParams
	 * @param {string} mapName
	 * @param {Object} mapDef
	 * @return {Promise}
	 */
	GLTFParser.prototype.assignTexture = function ( materialParams, mapName, mapDef ) {

		var parser = this;

		return this.getDependency( 'texture', mapDef.index ).then( function ( texture ) {

			if ( ! texture.isCompressedTexture ) {

				switch ( mapName ) {

					case 'aoMap':
					case 'emissiveMap':
					case 'metalnessMap':
					case 'normalMap':
					case 'roughnessMap':
						texture.format = RGBFormat;
						break;

				}

			}

			// Materials sample aoMap from UV set 1 and other maps from UV set 0 - this can't be configured
			// However, we will copy UV set 0 to UV set 1 on demand for aoMap
			if ( mapDef.texCoord !== undefined && mapDef.texCoord != 0 && ! ( mapName === 'aoMap' && mapDef.texCoord == 1 ) ) {

				console.warn( 'THREE.GLTFLoader: Custom UV set ' + mapDef.texCoord + ' for texture ' + mapName + ' not yet supported.' );

			}

			if ( parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] ) {

				var transform = mapDef.extensions !== undefined ? mapDef.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ] : undefined;

				if ( transform ) {

					texture = parser.extensions[ EXTENSIONS.KHR_TEXTURE_TRANSFORM ].extendTexture( texture, transform );

				}

			}

			materialParams[ mapName ] = texture;

		} );

	};

	/**
	 * Assigns final material to a Mesh, Line, or Points instance. The instance
	 * already has a material (generated from the glTF material options alone)
	 * but reuse of the same glTF material may require multiple threejs materials
	 * to accomodate different primitive types, defines, etc. New materials will
	 * be created if necessary, and reused from a cache.
	 * @param  {Object3D} mesh Mesh, Line, or Points instance.
	 */
	GLTFParser.prototype.assignFinalMaterial = function ( mesh ) {

		var geometry = mesh.geometry;
		var material = mesh.material;

		var useVertexTangents = geometry.attributes.tangent !== undefined;
		var useVertexColors = geometry.attributes.color !== undefined;
		var useFlatShading = geometry.attributes.normal === undefined;
		var useSkinning = mesh.isSkinnedMesh === true;
		var useMorphTargets = Object.keys( geometry.morphAttributes ).length > 0;
		var useMorphNormals = useMorphTargets && geometry.morphAttributes.normal !== undefined;

		if ( mesh.isPoints ) {

			var cacheKey = 'PointsMaterial:' + material.uuid;

			var pointsMaterial = this.cache.get( cacheKey );

			if ( ! pointsMaterial ) {

				pointsMaterial = new PointsMaterial();
				Material.prototype.copy.call( pointsMaterial, material );
				pointsMaterial.color.copy( material.color );
				pointsMaterial.map = material.map;
				pointsMaterial.sizeAttenuation = false; // glTF spec says points should be 1px

				this.cache.add( cacheKey, pointsMaterial );

			}

			material = pointsMaterial;

		} else if ( mesh.isLine ) {

			var cacheKey = 'LineBasicMaterial:' + material.uuid;

			var lineMaterial = this.cache.get( cacheKey );

			if ( ! lineMaterial ) {

				lineMaterial = new LineBasicMaterial();
				Material.prototype.copy.call( lineMaterial, material );
				lineMaterial.color.copy( material.color );

				this.cache.add( cacheKey, lineMaterial );

			}

			material = lineMaterial;

		}

		// Clone the material if it will be modified
		if ( useVertexTangents || useVertexColors || useFlatShading || useSkinning || useMorphTargets ) {

			var cacheKey = 'ClonedMaterial:' + material.uuid + ':';

			if ( material.isGLTFSpecularGlossinessMaterial ) cacheKey += 'specular-glossiness:';
			if ( useSkinning ) cacheKey += 'skinning:';
			if ( useVertexTangents ) cacheKey += 'vertex-tangents:';
			if ( useVertexColors ) cacheKey += 'vertex-colors:';
			if ( useFlatShading ) cacheKey += 'flat-shading:';
			if ( useMorphTargets ) cacheKey += 'morph-targets:';
			if ( useMorphNormals ) cacheKey += 'morph-normals:';

			var cachedMaterial = this.cache.get( cacheKey );

			if ( ! cachedMaterial ) {

				cachedMaterial = material.clone();

				if ( useSkinning ) cachedMaterial.skinning = true;
				if ( useVertexTangents ) cachedMaterial.vertexTangents = true;
				if ( useVertexColors ) cachedMaterial.vertexColors = true;
				if ( useFlatShading ) cachedMaterial.flatShading = true;
				if ( useMorphTargets ) cachedMaterial.morphTargets = true;
				if ( useMorphNormals ) cachedMaterial.morphNormals = true;

				this.cache.add( cacheKey, cachedMaterial );

			}

			material = cachedMaterial;

		}

		// workarounds for mesh and geometry

		if ( material.aoMap && geometry.attributes.uv2 === undefined && geometry.attributes.uv !== undefined ) {

			geometry.setAttribute( 'uv2', geometry.attributes.uv );

		}

		// https://github.com/mrdoob/three.js/issues/11438#issuecomment-507003995
		if ( material.normalScale && ! useVertexTangents ) {

			material.normalScale.y = - material.normalScale.y;

		}

		if ( material.clearcoatNormalScale && ! useVertexTangents ) {

			material.clearcoatNormalScale.y = - material.clearcoatNormalScale.y;

		}

		mesh.material = material;

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#materials
	 * @param {number} materialIndex
	 * @return {Promise<Material>}
	 */
	GLTFParser.prototype.loadMaterial = function ( materialIndex ) {

		var parser = this;
		var json = this.json;
		var extensions = this.extensions;
		var materialDef = json.materials[ materialIndex ];

		var materialType;
		var materialParams = {};
		var materialExtensions = materialDef.extensions || {};

		var pending = [];

		if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ] ) {

			var sgExtension = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ];
			materialType = sgExtension.getMaterialType();
			pending.push( sgExtension.extendParams( materialParams, materialDef, parser ) );

		} else if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ] ) {

			var kmuExtension = extensions[ EXTENSIONS.KHR_MATERIALS_UNLIT ];
			materialType = kmuExtension.getMaterialType();
			pending.push( kmuExtension.extendParams( materialParams, materialDef, parser ) );

		} else {

			// Specification:
			// https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#metallic-roughness-material

			materialType = MeshStandardMaterial;

			var metallicRoughness = materialDef.pbrMetallicRoughness || {};

			materialParams.color = new Color( 1.0, 1.0, 1.0 );
			materialParams.opacity = 1.0;

			if ( Array.isArray( metallicRoughness.baseColorFactor ) ) {

				var array = metallicRoughness.baseColorFactor;

				materialParams.color.fromArray( array );
				materialParams.opacity = array[ 3 ];

			}

			if ( metallicRoughness.baseColorTexture !== undefined ) {

				pending.push( parser.assignTexture( materialParams, 'map', metallicRoughness.baseColorTexture ) );

			}

			materialParams.metalness = metallicRoughness.metallicFactor !== undefined ? metallicRoughness.metallicFactor : 1.0;
			materialParams.roughness = metallicRoughness.roughnessFactor !== undefined ? metallicRoughness.roughnessFactor : 1.0;

			if ( metallicRoughness.metallicRoughnessTexture !== undefined ) {

				pending.push( parser.assignTexture( materialParams, 'metalnessMap', metallicRoughness.metallicRoughnessTexture ) );
				pending.push( parser.assignTexture( materialParams, 'roughnessMap', metallicRoughness.metallicRoughnessTexture ) );

			}

		}

		if ( materialDef.doubleSided === true ) {

			materialParams.side = DoubleSide;

		}

		var alphaMode = materialDef.alphaMode || ALPHA_MODES.OPAQUE;

		if ( alphaMode === ALPHA_MODES.BLEND ) {

			materialParams.transparent = true;

			// See: https://github.com/mrdoob/three.js/issues/17706
			materialParams.depthWrite = false;

		} else {

			materialParams.transparent = false;

			if ( alphaMode === ALPHA_MODES.MASK ) {

				materialParams.alphaTest = materialDef.alphaCutoff !== undefined ? materialDef.alphaCutoff : 0.5;

			}

		}

		if ( materialDef.normalTexture !== undefined && materialType !== MeshBasicMaterial ) {

			pending.push( parser.assignTexture( materialParams, 'normalMap', materialDef.normalTexture ) );

			materialParams.normalScale = new Vector2( 1, 1 );

			if ( materialDef.normalTexture.scale !== undefined ) {

				materialParams.normalScale.set( materialDef.normalTexture.scale, materialDef.normalTexture.scale );

			}

		}

		if ( materialDef.occlusionTexture !== undefined && materialType !== MeshBasicMaterial ) {

			pending.push( parser.assignTexture( materialParams, 'aoMap', materialDef.occlusionTexture ) );

			if ( materialDef.occlusionTexture.strength !== undefined ) {

				materialParams.aoMapIntensity = materialDef.occlusionTexture.strength;

			}

		}

		if ( materialDef.emissiveFactor !== undefined && materialType !== MeshBasicMaterial ) {

			materialParams.emissive = new Color().fromArray( materialDef.emissiveFactor );

		}

		if ( materialDef.emissiveTexture !== undefined && materialType !== MeshBasicMaterial ) {

			pending.push( parser.assignTexture( materialParams, 'emissiveMap', materialDef.emissiveTexture ) );

		}

		if ( materialExtensions[ EXTENSIONS.KHR_MATERIALS_CLEARCOAT ] ) {

			var clearcoatExtension = extensions[ EXTENSIONS.KHR_MATERIALS_CLEARCOAT ];
			materialType = clearcoatExtension.getMaterialType();
			pending.push( clearcoatExtension.extendParams( materialParams, { extensions: materialExtensions }, parser ) );

		}

		return Promise.all( pending ).then( function () {

			var material;

			if ( materialType === GLTFMeshStandardSGMaterial ) {

				material = extensions[ EXTENSIONS.KHR_MATERIALS_PBR_SPECULAR_GLOSSINESS ].createMaterial( materialParams );

			} else {

				material = new materialType( materialParams );

			}

			if ( materialDef.name ) material.name = materialDef.name;

			// baseColorTexture, emissiveTexture, and specularGlossinessTexture use sRGB encoding.
			if ( material.map ) material.map.encoding = sRGBEncoding;
			if ( material.emissiveMap ) material.emissiveMap.encoding = sRGBEncoding;

			assignExtrasToUserData( material, materialDef );

			if ( materialDef.extensions ) addUnknownExtensionsToUserData( extensions, material, materialDef );

			return material;

		} );

	};

	/**
	 * @param {BufferGeometry} geometry
	 * @param {GLTF.Primitive} primitiveDef
	 * @param {GLTFParser} parser
	 */
	function computeBounds( geometry, primitiveDef, parser ) {

		var attributes = primitiveDef.attributes;

		var box = new Box3();

		if ( attributes.POSITION !== undefined ) {

			var accessor = parser.json.accessors[ attributes.POSITION ];

			var min = accessor.min;
			var max = accessor.max;

			// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.

			if ( min !== undefined && max !== undefined ) {

				box.set(
					new Vector3( min[ 0 ], min[ 1 ], min[ 2 ] ),
					new Vector3( max[ 0 ], max[ 1 ], max[ 2 ] ) );

			} else {

				console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );

				return;

			}

		} else {

			return;

		}

		var targets = primitiveDef.targets;

		if ( targets !== undefined ) {

			var maxDisplacement = new Vector3();
			var vector = new Vector3();

			for ( var i = 0, il = targets.length; i < il; i ++ ) {

				var target = targets[ i ];

				if ( target.POSITION !== undefined ) {

					var accessor = parser.json.accessors[ target.POSITION ];
					var min = accessor.min;
					var max = accessor.max;

					// glTF requires 'min' and 'max', but VRM (which extends glTF) currently ignores that requirement.

					if ( min !== undefined && max !== undefined ) {

						// we need to get max of absolute components because target weight is [-1,1]
						vector.setX( Math.max( Math.abs( min[ 0 ] ), Math.abs( max[ 0 ] ) ) );
						vector.setY( Math.max( Math.abs( min[ 1 ] ), Math.abs( max[ 1 ] ) ) );
						vector.setZ( Math.max( Math.abs( min[ 2 ] ), Math.abs( max[ 2 ] ) ) );

						// Note: this assumes that the sum of all weights is at most 1. This isn't quite correct - it's more conservative
						// to assume that each target can have a max weight of 1. However, for some use cases - notably, when morph targets
						// are used to implement key-frame animations and as such only two are active at a time - this results in very large
						// boxes. So for now we make a box that's sometimes a touch too small but is hopefully mostly of reasonable size.
						maxDisplacement.max( vector );

					} else {

						console.warn( 'THREE.GLTFLoader: Missing min/max properties for accessor POSITION.' );

					}

				}

			}

			// As per comment above this box isn't conservative, but has a reasonable size for a very large number of morph targets.
			box.expandByVector( maxDisplacement );

		}

		geometry.boundingBox = box;

		var sphere = new Sphere();

		box.getCenter( sphere.center );
		sphere.radius = box.min.distanceTo( box.max ) / 2;

		geometry.boundingSphere = sphere;

	}

	/**
	 * @param {BufferGeometry} geometry
	 * @param {GLTF.Primitive} primitiveDef
	 * @param {GLTFParser} parser
	 * @return {Promise<BufferGeometry>}
	 */
	function addPrimitiveAttributes( geometry, primitiveDef, parser ) {

		var attributes = primitiveDef.attributes;

		var pending = [];

		function assignAttributeAccessor( accessorIndex, attributeName ) {

			return parser.getDependency( 'accessor', accessorIndex )
				.then( function ( accessor ) {

					geometry.setAttribute( attributeName, accessor );

				} );

		}

		for ( var gltfAttributeName in attributes ) {

			var threeAttributeName = ATTRIBUTES[ gltfAttributeName ] || gltfAttributeName.toLowerCase();

			// Skip attributes already provided by e.g. Draco extension.
			if ( threeAttributeName in geometry.attributes ) continue;

			pending.push( assignAttributeAccessor( attributes[ gltfAttributeName ], threeAttributeName ) );

		}

		if ( primitiveDef.indices !== undefined && ! geometry.index ) {

			var accessor = parser.getDependency( 'accessor', primitiveDef.indices ).then( function ( accessor ) {

				geometry.setIndex( accessor );

			} );

			pending.push( accessor );

		}

		assignExtrasToUserData( geometry, primitiveDef );

		computeBounds( geometry, primitiveDef, parser );

		return Promise.all( pending ).then( function () {

			return primitiveDef.targets !== undefined
				? addMorphTargets( geometry, primitiveDef.targets, parser )
				: geometry;

		} );

	}

	/**
	 * @param {BufferGeometry} geometry
	 * @param {Number} drawMode
	 * @return {BufferGeometry}
	 */
	function toTrianglesDrawMode( geometry, drawMode ) {

		var index = geometry.getIndex();

		// generate index if not present

		if ( index === null ) {

			var indices = [];

			var position = geometry.getAttribute( 'position' );

			if ( position !== undefined ) {

				for ( var i = 0; i < position.count; i ++ ) {

					indices.push( i );

				}

				geometry.setIndex( indices );
				index = geometry.getIndex();

			} else {

				console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Undefined position attribute. Processing not possible.' );
				return geometry;

			}

		}

		//

		var numberOfTriangles = index.count - 2;
		var newIndices = [];

		if ( drawMode === TriangleFanDrawMode ) {

			// gl.TRIANGLE_FAN

			for ( var i = 1; i <= numberOfTriangles; i ++ ) {

				newIndices.push( index.getX( 0 ) );
				newIndices.push( index.getX( i ) );
				newIndices.push( index.getX( i + 1 ) );

			}

		} else {

			// gl.TRIANGLE_STRIP

			for ( var i = 0; i < numberOfTriangles; i ++ ) {

				if ( i % 2 === 0 ) {

					newIndices.push( index.getX( i ) );
					newIndices.push( index.getX( i + 1 ) );
					newIndices.push( index.getX( i + 2 ) );


				} else {

					newIndices.push( index.getX( i + 2 ) );
					newIndices.push( index.getX( i + 1 ) );
					newIndices.push( index.getX( i ) );

				}

			}

		}

		if ( ( newIndices.length / 3 ) !== numberOfTriangles ) {

			console.error( 'THREE.GLTFLoader.toTrianglesDrawMode(): Unable to generate correct amount of triangles.' );

		}

		// build final geometry

		var newGeometry = geometry.clone();
		newGeometry.setIndex( newIndices );

		return newGeometry;

	}

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#geometry
	 *
	 * Creates BufferGeometries from primitives.
	 *
	 * @param {Array<GLTF.Primitive>} primitives
	 * @return {Promise<Array<BufferGeometry>>}
	 */
	GLTFParser.prototype.loadGeometries = function ( primitives ) {

		var parser = this;
		var extensions = this.extensions;
		var cache = this.primitiveCache;

		function createDracoPrimitive( primitive ) {

			return extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ]
				.decodePrimitive( primitive, parser )
				.then( function ( geometry ) {

					return addPrimitiveAttributes( geometry, primitive, parser );

				} );

		}

		var pending = [];

		for ( var i = 0, il = primitives.length; i < il; i ++ ) {

			var primitive = primitives[ i ];
			var cacheKey = createPrimitiveKey( primitive );

			// See if we've already created this geometry
			var cached = cache[ cacheKey ];

			if ( cached ) {

				// Use the cached geometry if it exists
				pending.push( cached.promise );

			} else {

				var geometryPromise;

				if ( primitive.extensions && primitive.extensions[ EXTENSIONS.KHR_DRACO_MESH_COMPRESSION ] ) {

					// Use DRACO geometry if available
					geometryPromise = createDracoPrimitive( primitive );

				} else {

					// Otherwise create a new geometry
					geometryPromise = addPrimitiveAttributes( new BufferGeometry(), primitive, parser );

				}

				// Cache this geometry
				cache[ cacheKey ] = { primitive: primitive, promise: geometryPromise };

				pending.push( geometryPromise );

			}

		}

		return Promise.all( pending );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/blob/master/specification/2.0/README.md#meshes
	 * @param {number} meshIndex
	 * @return {Promise<Group|Mesh|SkinnedMesh>}
	 */
	GLTFParser.prototype.loadMesh = function ( meshIndex ) {

		var parser = this;
		var json = this.json;

		var meshDef = json.meshes[ meshIndex ];
		var primitives = meshDef.primitives;

		var pending = [];

		for ( var i = 0, il = primitives.length; i < il; i ++ ) {

			var material = primitives[ i ].material === undefined
				? createDefaultMaterial( this.cache )
				: this.getDependency( 'material', primitives[ i ].material );

			pending.push( material );

		}

		pending.push( parser.loadGeometries( primitives ) );

		return Promise.all( pending ).then( function ( results ) {

			var materials = results.slice( 0, results.length - 1 );
			var geometries = results[ results.length - 1 ];

			var meshes = [];

			for ( var i = 0, il = geometries.length; i < il; i ++ ) {

				var geometry = geometries[ i ];
				var primitive = primitives[ i ];

				// 1. create Mesh

				var mesh;

				var material = materials[ i ];

				if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLES ||
					primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ||
					primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ||
					primitive.mode === undefined ) {

					// .isSkinnedMesh isn't in glTF spec. See .markDefs()
					mesh = meshDef.isSkinnedMesh === true
						? new SkinnedMesh( geometry, material )
						: new Mesh( geometry, material );

					if ( mesh.isSkinnedMesh === true && ! mesh.geometry.attributes.skinWeight.normalized ) {

						// we normalize floating point skin weight array to fix malformed assets (see #15319)
						// it's important to skip this for non-float32 data since normalizeSkinWeights assumes non-normalized inputs
						mesh.normalizeSkinWeights();

					}

					if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_STRIP ) {

						mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleStripDrawMode );

					} else if ( primitive.mode === WEBGL_CONSTANTS.TRIANGLE_FAN ) {

						mesh.geometry = toTrianglesDrawMode( mesh.geometry, TriangleFanDrawMode );

					}

				} else if ( primitive.mode === WEBGL_CONSTANTS.LINES ) {

					mesh = new LineSegments( geometry, material );

				} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_STRIP ) {

					mesh = new Line( geometry, material );

				} else if ( primitive.mode === WEBGL_CONSTANTS.LINE_LOOP ) {

					mesh = new LineLoop( geometry, material );

				} else if ( primitive.mode === WEBGL_CONSTANTS.POINTS ) {

					mesh = new Points( geometry, material );

				} else {

					throw new Error( 'THREE.GLTFLoader: Primitive mode unsupported: ' + primitive.mode );

				}

				if ( Object.keys( mesh.geometry.morphAttributes ).length > 0 ) {

					updateMorphTargets( mesh, meshDef );

				}

				mesh.name = meshDef.name || ( 'mesh_' + meshIndex );

				if ( geometries.length > 1 ) mesh.name += '_' + i;

				assignExtrasToUserData( mesh, meshDef );

				parser.assignFinalMaterial( mesh );

				meshes.push( mesh );

			}

			if ( meshes.length === 1 ) {

				return meshes[ 0 ];

			}

			var group = new Group();

			for ( var i = 0, il = meshes.length; i < il; i ++ ) {

				group.add( meshes[ i ] );

			}

			return group;

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#cameras
	 * @param {number} cameraIndex
	 * @return {Promise<THREE.Camera>}
	 */
	GLTFParser.prototype.loadCamera = function ( cameraIndex ) {

		var camera;
		var cameraDef = this.json.cameras[ cameraIndex ];
		var params = cameraDef[ cameraDef.type ];

		if ( ! params ) {

			console.warn( 'THREE.GLTFLoader: Missing camera parameters.' );
			return;

		}

		if ( cameraDef.type === 'perspective' ) {

			camera = new PerspectiveCamera( MathUtils.radToDeg( params.yfov ), params.aspectRatio || 1, params.znear || 1, params.zfar || 2e6 );

		} else if ( cameraDef.type === 'orthographic' ) {

			camera = new OrthographicCamera( - params.xmag, params.xmag, params.ymag, - params.ymag, params.znear, params.zfar );

		}

		if ( cameraDef.name ) camera.name = cameraDef.name;

		assignExtrasToUserData( camera, cameraDef );

		return Promise.resolve( camera );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#skins
	 * @param {number} skinIndex
	 * @return {Promise<Object>}
	 */
	GLTFParser.prototype.loadSkin = function ( skinIndex ) {

		var skinDef = this.json.skins[ skinIndex ];

		var skinEntry = { joints: skinDef.joints };

		if ( skinDef.inverseBindMatrices === undefined ) {

			return Promise.resolve( skinEntry );

		}

		return this.getDependency( 'accessor', skinDef.inverseBindMatrices ).then( function ( accessor ) {

			skinEntry.inverseBindMatrices = accessor;

			return skinEntry;

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#animations
	 * @param {number} animationIndex
	 * @return {Promise<AnimationClip>}
	 */
	GLTFParser.prototype.loadAnimation = function ( animationIndex ) {

		var json = this.json;

		var animationDef = json.animations[ animationIndex ];

		var pendingNodes = [];
		var pendingInputAccessors = [];
		var pendingOutputAccessors = [];
		var pendingSamplers = [];
		var pendingTargets = [];

		for ( var i = 0, il = animationDef.channels.length; i < il; i ++ ) {

			var channel = animationDef.channels[ i ];
			var sampler = animationDef.samplers[ channel.sampler ];
			var target = channel.target;
			var name = target.node !== undefined ? target.node : target.id; // NOTE: target.id is deprecated.
			var input = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.input ] : sampler.input;
			var output = animationDef.parameters !== undefined ? animationDef.parameters[ sampler.output ] : sampler.output;

			pendingNodes.push( this.getDependency( 'node', name ) );
			pendingInputAccessors.push( this.getDependency( 'accessor', input ) );
			pendingOutputAccessors.push( this.getDependency( 'accessor', output ) );
			pendingSamplers.push( sampler );
			pendingTargets.push( target );

		}

		return Promise.all( [

			Promise.all( pendingNodes ),
			Promise.all( pendingInputAccessors ),
			Promise.all( pendingOutputAccessors ),
			Promise.all( pendingSamplers ),
			Promise.all( pendingTargets )

		] ).then( function ( dependencies ) {

			var nodes = dependencies[ 0 ];
			var inputAccessors = dependencies[ 1 ];
			var outputAccessors = dependencies[ 2 ];
			var samplers = dependencies[ 3 ];
			var targets = dependencies[ 4 ];

			var tracks = [];

			for ( var i = 0, il = nodes.length; i < il; i ++ ) {

				var node = nodes[ i ];
				var inputAccessor = inputAccessors[ i ];
				var outputAccessor = outputAccessors[ i ];
				var sampler = samplers[ i ];
				var target = targets[ i ];

				if ( node === undefined ) continue;

				node.updateMatrix();
				node.matrixAutoUpdate = true;

				var TypedKeyframeTrack;

				switch ( PATH_PROPERTIES[ target.path ] ) {

					case PATH_PROPERTIES.weights:

						TypedKeyframeTrack = NumberKeyframeTrack;
						break;

					case PATH_PROPERTIES.rotation:

						TypedKeyframeTrack = QuaternionKeyframeTrack;
						break;

					case PATH_PROPERTIES.position:
					case PATH_PROPERTIES.scale:
					default:

						TypedKeyframeTrack = VectorKeyframeTrack;
						break;

				}

				var targetName = node.name ? node.name : node.uuid;

				var interpolation = sampler.interpolation !== undefined ? INTERPOLATION[ sampler.interpolation ] : InterpolateLinear;

				var targetNames = [];

				if ( PATH_PROPERTIES[ target.path ] === PATH_PROPERTIES.weights ) {

					// Node may be a Group (glTF mesh with several primitives) or a Mesh.
					node.traverse( function ( object ) {

						if ( object.isMesh === true && object.morphTargetInfluences ) {

							targetNames.push( object.name ? object.name : object.uuid );

						}

					} );

				} else {

					targetNames.push( targetName );

				}

				var outputArray = outputAccessor.array;

				if ( outputAccessor.normalized ) {

					var scale;

					if ( outputArray.constructor === Int8Array ) {

						scale = 1 / 127;

					} else if ( outputArray.constructor === Uint8Array ) {

						scale = 1 / 255;

					} else if ( outputArray.constructor == Int16Array ) {

						scale = 1 / 32767;

					} else if ( outputArray.constructor === Uint16Array ) {

						scale = 1 / 65535;

					} else {

						throw new Error( 'THREE.GLTFLoader: Unsupported output accessor component type.' );

					}

					var scaled = new Float32Array( outputArray.length );

					for ( var j = 0, jl = outputArray.length; j < jl; j ++ ) {

						scaled[ j ] = outputArray[ j ] * scale;

					}

					outputArray = scaled;

				}

				for ( var j = 0, jl = targetNames.length; j < jl; j ++ ) {

					var track = new TypedKeyframeTrack(
						targetNames[ j ] + '.' + PATH_PROPERTIES[ target.path ],
						inputAccessor.array,
						outputArray,
						interpolation
					);

					// Override interpolation with custom factory method.
					if ( sampler.interpolation === 'CUBICSPLINE' ) {

						track.createInterpolant = function InterpolantFactoryMethodGLTFCubicSpline( result ) {

							// A CUBICSPLINE keyframe in glTF has three output values for each input value,
							// representing inTangent, splineVertex, and outTangent. As a result, track.getValueSize()
							// must be divided by three to get the interpolant's sampleSize argument.

							return new GLTFCubicSplineInterpolant( this.times, this.values, this.getValueSize() / 3, result );

						};

						// Mark as CUBICSPLINE. `track.getInterpolation()` doesn't support custom interpolants.
						track.createInterpolant.isInterpolantFactoryMethodGLTFCubicSpline = true;

					}

					tracks.push( track );

				}

			}

			var name = animationDef.name ? animationDef.name : 'animation_' + animationIndex;

			return new AnimationClip( name, undefined, tracks );

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#nodes-and-hierarchy
	 * @param {number} nodeIndex
	 * @return {Promise<Object3D>}
	 */
	GLTFParser.prototype.loadNode = function ( nodeIndex ) {

		var json = this.json;
		var extensions = this.extensions;
		var parser = this;

		var meshReferences = json.meshReferences;
		var meshUses = json.meshUses;

		var nodeDef = json.nodes[ nodeIndex ];

		return ( function () {

			var pending = [];

			if ( nodeDef.mesh !== undefined ) {

				pending.push( parser.getDependency( 'mesh', nodeDef.mesh ).then( function ( mesh ) {

					var node;

					if ( meshReferences[ nodeDef.mesh ] > 1 ) {

						var instanceNum = meshUses[ nodeDef.mesh ] ++;

						node = mesh.clone();
						node.name += '_instance_' + instanceNum;

					} else {

						node = mesh;

					}

					// if weights are provided on the node, override weights on the mesh.
					if ( nodeDef.weights !== undefined ) {

						node.traverse( function ( o ) {

							if ( ! o.isMesh ) return;

							for ( var i = 0, il = nodeDef.weights.length; i < il; i ++ ) {

								o.morphTargetInfluences[ i ] = nodeDef.weights[ i ];

							}

						} );

					}

					return node;

				} ) );

			}

			if ( nodeDef.camera !== undefined ) {

				pending.push( parser.getDependency( 'camera', nodeDef.camera ) );

			}

			if ( nodeDef.extensions
				&& nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ]
				&& nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].light !== undefined ) {

				pending.push( parser.getDependency( 'light', nodeDef.extensions[ EXTENSIONS.KHR_LIGHTS_PUNCTUAL ].light ) );

			}

			return Promise.all( pending );

		}() ).then( function ( objects ) {

			var node;

			// .isBone isn't in glTF spec. See .markDefs
			if ( nodeDef.isBone === true ) {

				node = new Bone();

			} else if ( objects.length > 1 ) {

				node = new Group();

			} else if ( objects.length === 1 ) {

				node = objects[ 0 ];

			} else {

				node = new Object3D();

			}

			if ( node !== objects[ 0 ] ) {

				for ( var i = 0, il = objects.length; i < il; i ++ ) {

					node.add( objects[ i ] );

				}

			}

			if ( nodeDef.name ) {

				node.userData.name = nodeDef.name;
				node.name = PropertyBinding.sanitizeNodeName( nodeDef.name );

			}

			assignExtrasToUserData( node, nodeDef );

			if ( nodeDef.extensions ) addUnknownExtensionsToUserData( extensions, node, nodeDef );

			if ( nodeDef.matrix !== undefined ) {

				var matrix = new Matrix4();
				matrix.fromArray( nodeDef.matrix );
				node.applyMatrix4( matrix );

			} else {

				if ( nodeDef.translation !== undefined ) {

					node.position.fromArray( nodeDef.translation );

				}

				if ( nodeDef.rotation !== undefined ) {

					node.quaternion.fromArray( nodeDef.rotation );

				}

				if ( nodeDef.scale !== undefined ) {

					node.scale.fromArray( nodeDef.scale );

				}

			}

			return node;

		} );

	};

	/**
	 * Specification: https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#scenes
	 * @param {number} sceneIndex
	 * @return {Promise<Group>}
	 */
	GLTFParser.prototype.loadScene = function () {

		// scene node hierachy builder

		function buildNodeHierachy( nodeId, parentObject, json, parser ) {

			var nodeDef = json.nodes[ nodeId ];

			return parser.getDependency( 'node', nodeId ).then( function ( node ) {

				if ( nodeDef.skin === undefined ) return node;

				// build skeleton here as well

				var skinEntry;

				return parser.getDependency( 'skin', nodeDef.skin ).then( function ( skin ) {

					skinEntry = skin;

					var pendingJoints = [];

					for ( var i = 0, il = skinEntry.joints.length; i < il; i ++ ) {

						pendingJoints.push( parser.getDependency( 'node', skinEntry.joints[ i ] ) );

					}

					return Promise.all( pendingJoints );

				} ).then( function ( jointNodes ) {

					node.traverse( function ( mesh ) {

						if ( ! mesh.isMesh ) return;

						var bones = [];
						var boneInverses = [];

						for ( var j = 0, jl = jointNodes.length; j < jl; j ++ ) {

							var jointNode = jointNodes[ j ];

							if ( jointNode ) {

								bones.push( jointNode );

								var mat = new Matrix4();

								if ( skinEntry.inverseBindMatrices !== undefined ) {

									mat.fromArray( skinEntry.inverseBindMatrices.array, j * 16 );

								}

								boneInverses.push( mat );

							} else {

								console.warn( 'THREE.GLTFLoader: Joint "%s" could not be found.', skinEntry.joints[ j ] );

							}

						}

						mesh.bind( new Skeleton( bones, boneInverses ), mesh.matrixWorld );

					} );

					return node;

				} );

			} ).then( function ( node ) {

				// build node hierachy

				parentObject.add( node );

				var pending = [];

				if ( nodeDef.children ) {

					var children = nodeDef.children;

					for ( var i = 0, il = children.length; i < il; i ++ ) {

						var child = children[ i ];
						pending.push( buildNodeHierachy( child, node, json, parser ) );

					}

				}

				return Promise.all( pending );

			} );

		}

		return function loadScene( sceneIndex ) {

			var json = this.json;
			var extensions = this.extensions;
			var sceneDef = this.json.scenes[ sceneIndex ];
			var parser = this;

			// Loader returns Group, not Scene.
			// See: https://github.com/mrdoob/three.js/issues/18342#issuecomment-578981172
			var scene = new Group();
			if ( sceneDef.name ) scene.name = sceneDef.name;

			assignExtrasToUserData( scene, sceneDef );

			if ( sceneDef.extensions ) addUnknownExtensionsToUserData( extensions, scene, sceneDef );

			var nodeIds = sceneDef.nodes || [];

			var pending = [];

			for ( var i = 0, il = nodeIds.length; i < il; i ++ ) {

				pending.push( buildNodeHierachy( nodeIds[ i ], scene, json, parser ) );

			}

			return Promise.all( pending ).then( function () {

				return scene;

			} );

		};

	}();

	return GLTFLoader;

} )()