three#MeshPhongMaterial JavaScript Examples
The following examples show how to use
three#MeshPhongMaterial.
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example #1
Source File: floor.js From architect3d with MIT License | 6 votes |
buildFloor()
{
var textureSettings = this.room.getTexture();
// setup texture
// var floorTexture = ImageUtils.loadTexture(textureSettings.url);
var floorTexture = new TextureLoader().load(textureSettings.url);
floorTexture.wrapS = RepeatWrapping;
floorTexture.wrapT = RepeatWrapping;
floorTexture.repeat.set(1, 1);
var floorMaterialTop = new MeshPhongMaterial({
map: floorTexture,
side: DoubleSide,
// ambient: 0xffffff, TODO_Ekki
color: 0xcccccc,
specular: 0x0a0a0a
});
var textureScale = textureSettings.scale;
// http://stackoverflow.com/questions/19182298/how-to-texture-a-three-js-mesh-created-with-shapegeometry
// scale down coords to fit 0 -> 1, then rescale
var points = [];
this.room.interiorCorners.forEach((corner) => {
points.push(new Vector2(corner.x / textureScale,corner.y / textureScale));
});
var shape = new Shape(points);
var geometry = new ShapeGeometry(shape);
var floor = new Mesh(geometry, floorMaterialTop);
floor.rotation.set(Math.PI / 2, 0, 0);
floor.scale.set(textureScale, textureScale, textureScale);
floor.receiveShadow = true;
floor.castShadow = false;
return floor;
}
Example #2
Source File: VoxelLoader.js From three-voxel-loader with MIT License | 6 votes |
/**
* Set the material used for all voxels.
* Note that the {@link Material.vertexColors} will be set to {@link VertexColors}.
* @param {Material} Material The wanted material.
*/
setVoxelMaterial(material) {
let defaultMaterial = new MeshPhongMaterial({
color: 0xffffff
});
material = typeof material !== 'undefined' ? material : defaultMaterial;
material.vertexColors = VertexColors
this.material = material;
}
Example #3
Source File: OBJLoader.js From AudioPlayer with MIT License | 4 votes |
OBJLoader = (function () {
// o object_name | g group_name
var object_pattern = /^[og]\s*(.+)?/;
// mtllib file_reference
var material_library_pattern = /^mtllib /;
// usemtl material_name
var material_use_pattern = /^usemtl /;
// usemap map_name
var map_use_pattern = /^usemap /;
function ParserState() {
var state = {
objects: [],
object: {},
vertices: [],
normals: [],
colors: [],
uvs: [],
materialLibraries: [],
startObject: function (name, fromDeclaration) {
// If the current object (initial from reset) is not from a g/o declaration in the parsed
// file. We need to use it for the first parsed g/o to keep things in sync.
if (this.object && this.object.fromDeclaration === false) {
this.object.name = name;
this.object.fromDeclaration = fromDeclaration !== false;
return;
}
var previousMaterial =
this.object && typeof this.object.currentMaterial === "function"
? this.object.currentMaterial()
: undefined;
if (this.object && typeof this.object._finalize === "function") {
this.object._finalize(true);
}
this.object = {
name: name || "",
fromDeclaration: fromDeclaration !== false,
geometry: {
vertices: [],
normals: [],
colors: [],
uvs: [],
},
materials: [],
smooth: true,
startMaterial: function (name, libraries) {
var previous = this._finalize(false);
// New usemtl declaration overwrites an inherited material, except if faces were declared
// after the material, then it must be preserved for proper MultiMaterial continuation.
if (previous && (previous.inherited || previous.groupCount <= 0)) {
this.materials.splice(previous.index, 1);
}
var material = {
index: this.materials.length,
name: name || "",
mtllib:
Array.isArray(libraries) && libraries.length > 0
? libraries[libraries.length - 1]
: "",
smooth: previous !== undefined ? previous.smooth : this.smooth,
groupStart: previous !== undefined ? previous.groupEnd : 0,
groupEnd: -1,
groupCount: -1,
inherited: false,
clone: function (index) {
var cloned = {
index: typeof index === "number" ? index : this.index,
name: this.name,
mtllib: this.mtllib,
smooth: this.smooth,
groupStart: 0,
groupEnd: -1,
groupCount: -1,
inherited: false,
};
cloned.clone = this.clone.bind(cloned);
return cloned;
},
};
this.materials.push(material);
return material;
},
currentMaterial: function () {
if (this.materials.length > 0) {
return this.materials[this.materials.length - 1];
}
return undefined;
},
_finalize: function (end) {
var lastMultiMaterial = this.currentMaterial();
if (lastMultiMaterial && lastMultiMaterial.groupEnd === -1) {
lastMultiMaterial.groupEnd = this.geometry.vertices.length / 3;
lastMultiMaterial.groupCount =
lastMultiMaterial.groupEnd - lastMultiMaterial.groupStart;
lastMultiMaterial.inherited = false;
}
// Ignore objects tail materials if no face declarations followed them before a new o/g started.
if (end && this.materials.length > 1) {
for (var mi = this.materials.length - 1; mi >= 0; mi--) {
if (this.materials[mi].groupCount <= 0) {
this.materials.splice(mi, 1);
}
}
}
// Guarantee at least one empty material, this makes the creation later more straight forward.
if (end && this.materials.length === 0) {
this.materials.push({
name: "",
smooth: this.smooth,
});
}
return lastMultiMaterial;
},
};
// Inherit previous objects material.
// Spec tells us that a declared material must be set to all objects until a new material is declared.
// If a usemtl declaration is encountered while this new object is being parsed, it will
// overwrite the inherited material. Exception being that there was already face declarations
// to the inherited material, then it will be preserved for proper MultiMaterial continuation.
if (
previousMaterial &&
previousMaterial.name &&
typeof previousMaterial.clone === "function"
) {
var declared = previousMaterial.clone(0);
declared.inherited = true;
this.object.materials.push(declared);
}
this.objects.push(this.object);
},
finalize: function () {
if (this.object && typeof this.object._finalize === "function") {
this.object._finalize(true);
}
},
parseVertexIndex: function (value, len) {
var index = parseInt(value, 10);
return (index >= 0 ? index - 1 : index + len / 3) * 3;
},
parseNormalIndex: function (value, len) {
var index = parseInt(value, 10);
return (index >= 0 ? index - 1 : index + len / 3) * 3;
},
parseUVIndex: function (value, len) {
var index = parseInt(value, 10);
return (index >= 0 ? index - 1 : index + len / 2) * 2;
},
addVertex: function (a, b, c) {
var src = this.vertices;
var dst = this.object.geometry.vertices;
dst.push(src[a + 0], src[a + 1], src[a + 2]);
dst.push(src[b + 0], src[b + 1], src[b + 2]);
dst.push(src[c + 0], src[c + 1], src[c + 2]);
},
addVertexPoint: function (a) {
var src = this.vertices;
var dst = this.object.geometry.vertices;
dst.push(src[a + 0], src[a + 1], src[a + 2]);
},
addVertexLine: function (a) {
var src = this.vertices;
var dst = this.object.geometry.vertices;
dst.push(src[a + 0], src[a + 1], src[a + 2]);
},
addNormal: function (a, b, c) {
var src = this.normals;
var dst = this.object.geometry.normals;
dst.push(src[a + 0], src[a + 1], src[a + 2]);
dst.push(src[b + 0], src[b + 1], src[b + 2]);
dst.push(src[c + 0], src[c + 1], src[c + 2]);
},
addColor: function (a, b, c) {
var src = this.colors;
var dst = this.object.geometry.colors;
dst.push(src[a + 0], src[a + 1], src[a + 2]);
dst.push(src[b + 0], src[b + 1], src[b + 2]);
dst.push(src[c + 0], src[c + 1], src[c + 2]);
},
addUV: function (a, b, c) {
var src = this.uvs;
var dst = this.object.geometry.uvs;
dst.push(src[a + 0], src[a + 1]);
dst.push(src[b + 0], src[b + 1]);
dst.push(src[c + 0], src[c + 1]);
},
addUVLine: function (a) {
var src = this.uvs;
var dst = this.object.geometry.uvs;
dst.push(src[a + 0], src[a + 1]);
},
addFace: function (a, b, c, ua, ub, uc, na, nb, nc) {
var vLen = this.vertices.length;
var ia = this.parseVertexIndex(a, vLen);
var ib = this.parseVertexIndex(b, vLen);
var ic = this.parseVertexIndex(c, vLen);
this.addVertex(ia, ib, ic);
if (this.colors.length > 0) {
this.addColor(ia, ib, ic);
}
if (ua !== undefined && ua !== "") {
var uvLen = this.uvs.length;
ia = this.parseUVIndex(ua, uvLen);
ib = this.parseUVIndex(ub, uvLen);
ic = this.parseUVIndex(uc, uvLen);
this.addUV(ia, ib, ic);
}
if (na !== undefined && na !== "") {
// Normals are many times the same. If so, skip function call and parseInt.
var nLen = this.normals.length;
ia = this.parseNormalIndex(na, nLen);
ib = na === nb ? ia : this.parseNormalIndex(nb, nLen);
ic = na === nc ? ia : this.parseNormalIndex(nc, nLen);
this.addNormal(ia, ib, ic);
}
},
addPointGeometry: function (vertices) {
this.object.geometry.type = "Points";
var vLen = this.vertices.length;
for (var vi = 0, l = vertices.length; vi < l; vi++) {
this.addVertexPoint(this.parseVertexIndex(vertices[vi], vLen));
}
},
addLineGeometry: function (vertices, uvs) {
this.object.geometry.type = "Line";
var vLen = this.vertices.length;
var uvLen = this.uvs.length;
for (var vi = 0, l = vertices.length; vi < l; vi++) {
this.addVertexLine(this.parseVertexIndex(vertices[vi], vLen));
}
for (var uvi = 0, l = uvs.length; uvi < l; uvi++) {
this.addUVLine(this.parseUVIndex(uvs[uvi], uvLen));
}
},
};
state.startObject("", false);
return state;
}
//
function OBJLoader(manager) {
Loader.call(this, manager);
this.materials = null;
}
OBJLoader.prototype = Object.assign(Object.create(Loader.prototype), {
constructor: OBJLoader,
load: function (url, onLoad, onProgress, onError) {
var scope = this;
var loader = new FileLoader(scope.manager);
loader.setPath(this.path);
loader.load(
url,
function (text) {
onLoad(scope.parse(text));
},
onProgress,
onError
);
},
setMaterials: function (materials) {
this.materials = materials;
return this;
},
parse: function (text) {
console.time("OBJLoader");
var state = new ParserState();
if (text.indexOf("\r\n") !== -1) {
// This is faster than String.split with regex that splits on both
text = text.replace(/\r\n/g, "\n");
}
if (text.indexOf("\\\n") !== -1) {
// join lines separated by a line continuation character (\)
text = text.replace(/\\\n/g, "");
}
var lines = text.split("\n");
var line = "",
lineFirstChar = "";
var lineLength = 0;
var result = [];
// Faster to just trim left side of the line. Use if available.
var trimLeft = typeof "".trimLeft === "function";
for (var i = 0, l = lines.length; i < l; i++) {
line = lines[i];
line = trimLeft ? line.trimLeft() : line.trim();
lineLength = line.length;
if (lineLength === 0) continue;
lineFirstChar = line.charAt(0);
// @todo invoke passed in handler if any
if (lineFirstChar === "#") continue;
if (lineFirstChar === "v") {
var data = line.split(/\s+/);
switch (data[0]) {
case "v":
state.vertices.push(
parseFloat(data[1]),
parseFloat(data[2]),
parseFloat(data[3])
);
if (data.length >= 7) {
state.colors.push(
parseFloat(data[4]),
parseFloat(data[5]),
parseFloat(data[6])
);
}
break;
case "vn":
state.normals.push(
parseFloat(data[1]),
parseFloat(data[2]),
parseFloat(data[3])
);
break;
case "vt":
state.uvs.push(parseFloat(data[1]), parseFloat(data[2]));
break;
}
} else if (lineFirstChar === "f") {
var lineData = line.substr(1).trim();
var vertexData = lineData.split(/\s+/);
var faceVertices = [];
// Parse the face vertex data into an easy to work with format
for (var j = 0, jl = vertexData.length; j < jl; j++) {
var vertex = vertexData[j];
if (vertex.length > 0) {
var vertexParts = vertex.split("/");
faceVertices.push(vertexParts);
}
}
// Draw an edge between the first vertex and all subsequent vertices to form an n-gon
var v1 = faceVertices[0];
for (var j = 1, jl = faceVertices.length - 1; j < jl; j++) {
var v2 = faceVertices[j];
var v3 = faceVertices[j + 1];
state.addFace(
v1[0],
v2[0],
v3[0],
v1[1],
v2[1],
v3[1],
v1[2],
v2[2],
v3[2]
);
}
} else if (lineFirstChar === "l") {
var lineParts = line.substring(1).trim().split(" ");
var lineVertices = [],
lineUVs = [];
if (line.indexOf("/") === -1) {
lineVertices = lineParts;
} else {
for (var li = 0, llen = lineParts.length; li < llen; li++) {
var parts = lineParts[li].split("/");
if (parts[0] !== "") lineVertices.push(parts[0]);
if (parts[1] !== "") lineUVs.push(parts[1]);
}
}
state.addLineGeometry(lineVertices, lineUVs);
} else if (lineFirstChar === "p") {
var lineData = line.substr(1).trim();
var pointData = lineData.split(" ");
state.addPointGeometry(pointData);
} else if ((result = object_pattern.exec(line)) !== null) {
// o object_name
// or
// g group_name
// WORKAROUND: https://bugs.chromium.org/p/v8/issues/detail?id=2869
// var name = result[ 0 ].substr( 1 ).trim();
var name = (" " + result[0].substr(1).trim()).substr(1);
state.startObject(name);
} else if (material_use_pattern.test(line)) {
// material
state.object.startMaterial(
line.substring(7).trim(),
state.materialLibraries
);
} else if (material_library_pattern.test(line)) {
// mtl file
state.materialLibraries.push(line.substring(7).trim());
} else if (map_use_pattern.test(line)) {
// the line is parsed but ignored since the loader assumes textures are defined MTL files
// (according to https://www.okino.com/conv/imp_wave.htm, 'usemap' is the old-style Wavefront texture reference method)
console.warn(
'THREE.OBJLoader: Rendering identifier "usemap" not supported. Textures must be defined in MTL files.'
);
} else if (lineFirstChar === "s") {
result = line.split(" ");
// smooth shading
// @todo Handle files that have varying smooth values for a set of faces inside one geometry,
// but does not define a usemtl for each face set.
// This should be detected and a dummy material created (later MultiMaterial and geometry groups).
// This requires some care to not create extra material on each smooth value for "normal" obj files.
// where explicit usemtl defines geometry groups.
// Example asset: examples/models/obj/cerberus/Cerberus.obj
/*
* http://paulbourke.net/dataformats/obj/
* or
* http://www.cs.utah.edu/~boulos/cs3505/obj_spec.pdf
*
* From chapter "Grouping" Syntax explanation "s group_number":
* "group_number is the smoothing group number. To turn off smoothing groups, use a value of 0 or off.
* Polygonal elements use group numbers to put elements in different smoothing groups. For free-form
* surfaces, smoothing groups are either turned on or off; there is no difference between values greater
* than 0."
*/
if (result.length > 1) {
var value = result[1].trim().toLowerCase();
state.object.smooth = value !== "0" && value !== "off";
} else {
// ZBrush can produce "s" lines #11707
state.object.smooth = true;
}
var material = state.object.currentMaterial();
if (material) material.smooth = state.object.smooth;
} else {
// Handle null terminated files without exception
if (line === "\0") continue;
throw new Error('THREE.OBJLoader: Unexpected line: "' + line + '"');
}
}
state.finalize();
var container = new Group();
container.materialLibraries = [].concat(state.materialLibraries);
for (var i = 0, l = state.objects.length; i < l; i++) {
var object = state.objects[i];
var geometry = object.geometry;
var materials = object.materials;
var isLine = geometry.type === "Line";
var isPoints = geometry.type === "Points";
var hasVertexColors = false;
// Skip o/g line declarations that did not follow with any faces
if (geometry.vertices.length === 0) continue;
var buffergeometry = new BufferGeometry();
buffergeometry.setAttribute(
"position",
new Float32BufferAttribute(geometry.vertices, 3)
);
if (geometry.normals.length > 0) {
buffergeometry.setAttribute(
"normal",
new Float32BufferAttribute(geometry.normals, 3)
);
} else {
buffergeometry.computeVertexNormals();
}
if (geometry.colors.length > 0) {
hasVertexColors = true;
buffergeometry.setAttribute(
"color",
new Float32BufferAttribute(geometry.colors, 3)
);
}
if (geometry.uvs.length > 0) {
buffergeometry.setAttribute(
"uv",
new Float32BufferAttribute(geometry.uvs, 2)
);
}
// Create materials
var createdMaterials = [];
for (var mi = 0, miLen = materials.length; mi < miLen; mi++) {
var sourceMaterial = materials[mi];
var material = undefined;
if (this.materials !== null) {
material = this.materials.create(sourceMaterial.name);
// mtl etc. loaders probably can't create line materials correctly, copy properties to a line material.
if (
isLine &&
material &&
!(material instanceof LineBasicMaterial)
) {
var materialLine = new LineBasicMaterial();
Material.prototype.copy.call(materialLine, material);
materialLine.color.copy(material.color);
material = materialLine;
} else if (
isPoints &&
material &&
!(material instanceof PointsMaterial)
) {
var materialPoints = new PointsMaterial({
size: 10,
sizeAttenuation: false,
});
Material.prototype.copy.call(materialPoints, material);
materialPoints.color.copy(material.color);
materialPoints.map = material.map;
material = materialPoints;
}
}
if (!material) {
if (isLine) {
material = new LineBasicMaterial();
} else if (isPoints) {
material = new PointsMaterial({
size: 1,
sizeAttenuation: false,
});
} else {
material = new MeshPhongMaterial();
}
material.name = sourceMaterial.name;
}
material.flatShading = sourceMaterial.smooth ? false : true;
material.vertexColors = hasVertexColors ? VertexColors : NoColors;
createdMaterials.push(material);
}
// Create mesh
var mesh;
if (createdMaterials.length > 1) {
for (var mi = 0, miLen = materials.length; mi < miLen; mi++) {
var sourceMaterial = materials[mi];
buffergeometry.addGroup(
sourceMaterial.groupStart,
sourceMaterial.groupCount,
mi
);
}
if (isLine) {
mesh = new LineSegments(buffergeometry, createdMaterials);
} else if (isPoints) {
mesh = new Points(buffergeometry, createdMaterials);
} else {
mesh = new Mesh(buffergeometry, createdMaterials);
}
} else {
if (isLine) {
mesh = new LineSegments(buffergeometry, createdMaterials[0]);
} else if (isPoints) {
mesh = new Points(buffergeometry, createdMaterials[0]);
} else {
mesh = new Mesh(buffergeometry, createdMaterials[0]);
}
}
mesh.name = object.name;
container.add(mesh);
}
console.timeEnd("OBJLoader");
return container;
},
});
return OBJLoader;
})()
Example #4
Source File: DisplacementSphere.js From personal-website-react with MIT License | 4 votes |
DisplacementSphere = (props) => {
const { theme } = useContext(ThemeContext);
const rgbBackground = theme === "light" ? "250 250 250" : "17 17 17";
const width = useRef(window.innerWidth);
const height = useRef(window.innerHeight);
const start = useRef(Date.now());
const canvasRef = useRef();
const mouse = useRef();
const renderer = useRef();
const camera = useRef();
const scene = useRef();
const lights = useRef();
const uniforms = useRef();
const material = useRef();
const geometry = useRef();
const sphere = useRef();
const tweenRef = useRef();
const sphereSpring = useRef();
const prefersReducedMotion = Boolean(usePrefersReducedMotion() && false); //disabled until switching themes fixed
const isInViewport = useInViewport(canvasRef);
useEffect(() => {
mouse.current = new Vector2(0.8, 0.5);
renderer.current = new WebGLRenderer({
canvas: canvasRef.current,
powerPreference: "high-performance",
});
renderer.current.setSize(width.current, height.current);
renderer.current.setPixelRatio(1);
renderer.current.outputEncoding = sRGBEncoding;
camera.current = new PerspectiveCamera(
55,
width.current / height.current,
0.1,
200
);
camera.current.position.z = 52;
scene.current = new Scene();
material.current = new MeshPhongMaterial();
material.current.onBeforeCompile = (shader) => {
uniforms.current = UniformsUtils.merge([
UniformsLib["ambient"],
UniformsLib["lights"],
shader.uniforms,
{ time: { type: "f", value: 0 } },
]);
shader.uniforms = uniforms.current;
shader.vertexShader = vertShader;
shader.fragmentShader = fragShader;
shader.lights = true;
};
geometry.current = new SphereBufferGeometry(32, 128, 128);
sphere.current = new Mesh(geometry.current, material.current);
sphere.current.position.z = 0;
sphere.current.modifier = Math.random();
scene.current.add(sphere.current);
return () => {
cleanScene(scene.current);
cleanRenderer(renderer.current);
};
}, []);
useEffect(() => {
const dirLight = new DirectionalLight(
rgbToThreeColor("250 250 250"),
0.6
);
const ambientLight = new AmbientLight(
rgbToThreeColor("250 250 250"),
theme === "light" ? 0.8 : 0.1
);
dirLight.position.z = 200;
dirLight.position.x = 100;
dirLight.position.y = 100;
lights.current = [dirLight, ambientLight];
scene.current.background = rgbToThreeColor(rgbBackground);
lights.current.forEach((light) => scene.current.add(light));
return () => {
removeLights(lights.current);
};
}, [rgbBackground, theme]);
useEffect(() => {
const handleResize = () => {
const canvasHeight = innerHeight();
const windowWidth = window.innerWidth;
const fullHeight = canvasHeight + canvasHeight * 0.3;
canvasRef.current.style.height = fullHeight;
renderer.current.setSize(windowWidth, fullHeight);
camera.current.aspect = windowWidth / fullHeight;
camera.current.updateProjectionMatrix();
// Render a single frame on resize when not animating
if (prefersReducedMotion) {
renderer.current.render(scene.current, camera.current);
}
if (windowWidth <= media.mobile) {
sphere.current.position.x = 14;
sphere.current.position.y = 10;
} else if (windowWidth <= media.tablet) {
sphere.current.position.x = 18;
sphere.current.position.y = 14;
} else {
sphere.current.position.x = 22;
sphere.current.position.y = 16;
}
};
window.addEventListener("resize", handleResize);
handleResize();
return () => {
window.removeEventListener("resize", handleResize);
};
}, [prefersReducedMotion]);
useEffect(() => {
const onMouseMove = (event) => {
const { rotation } = sphere.current;
const position = {
x: event.clientX / window.innerWidth,
y: event.clientY / window.innerHeight,
};
if (!sphereSpring.current) {
sphereSpring.current = value(rotation.toArray(), (values) =>
rotation.set(
values[0],
values[1],
sphere.current.rotation.z
)
);
}
tweenRef.current = spring({
from: sphereSpring.current.get(),
to: [position.y / 2, position.x / 2],
stiffness: 30,
damping: 20,
velocity: sphereSpring.current.getVelocity(),
mass: 2,
restSpeed: 0.0001,
}).start(sphereSpring.current);
};
if (!prefersReducedMotion && isInViewport) {
window.addEventListener("mousemove", onMouseMove);
}
return () => {
window.removeEventListener("mousemove", onMouseMove);
if (tweenRef.current) {
tweenRef.current.stop();
}
};
}, [isInViewport, prefersReducedMotion]);
useEffect(() => {
let animation;
const animate = () => {
animation = requestAnimationFrame(animate);
if (uniforms.current !== undefined) {
uniforms.current.time.value =
0.00005 * (Date.now() - start.current);
}
sphere.current.rotation.z += 0.001;
renderer.current.render(scene.current, camera.current);
};
if (!prefersReducedMotion && isInViewport) {
animate();
} else {
renderer.current.render(scene.current, camera.current);
}
return () => {
cancelAnimationFrame(animation);
};
}, [isInViewport, prefersReducedMotion]);
return (
<Transition appear in onEnter={reflow} timeout={3000}>
{(status) => (
<canvas
aria-hidden
className={classNames(
"displacement-sphere",
`displacement-sphere--${status}`
)}
ref={canvasRef}
{...props}
/>
)}
</Transition>
);
}
Example #5
Source File: 3MFLoader.js From canvas with Apache License 2.0 | 4 votes |
ThreeMFLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: ThreeMFLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var loader = new FileLoader( scope.manager );
loader.setPath( scope.path );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
try {
onLoad( scope.parse( buffer ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
},
parse: function ( data ) {
var scope = this;
var textureLoader = new TextureLoader( this.manager );
function loadDocument( data ) {
var zip = null;
var file = null;
var relsName;
var modelRelsName;
var modelPartNames = [];
var printTicketPartNames = [];
var texturesPartNames = [];
var otherPartNames = [];
var rels;
var modelRels;
var modelParts = {};
var printTicketParts = {};
var texturesParts = {};
var otherParts = {};
try {
zip = new JSZip( data );
} catch ( e ) {
if ( e instanceof ReferenceError ) {
console.error( 'THREE.3MFLoader: jszip missing and file is compressed.' );
return null;
}
}
for ( file in zip.files ) {
if ( file.match( /\_rels\/.rels$/ ) ) {
relsName = file;
} else if ( file.match( /3D\/_rels\/.*\.model\.rels$/ ) ) {
modelRelsName = file;
} else if ( file.match( /^3D\/.*\.model$/ ) ) {
modelPartNames.push( file );
} else if ( file.match( /^3D\/Metadata\/.*\.xml$/ ) ) {
printTicketPartNames.push( file );
} else if ( file.match( /^3D\/Textures?\/.*/ ) ) {
texturesPartNames.push( file );
} else if ( file.match( /^3D\/Other\/.*/ ) ) {
otherPartNames.push( file );
}
}
//
var relsView = new Uint8Array( zip.file( relsName ).asArrayBuffer() );
var relsFileText = LoaderUtils.decodeText( relsView );
rels = parseRelsXml( relsFileText );
//
if ( modelRelsName ) {
var relsView = new Uint8Array( zip.file( modelRelsName ).asArrayBuffer() );
var relsFileText = LoaderUtils.decodeText( relsView );
modelRels = parseRelsXml( relsFileText );
}
//
for ( var i = 0; i < modelPartNames.length; i ++ ) {
var modelPart = modelPartNames[ i ];
var view = new Uint8Array( zip.file( modelPart ).asArrayBuffer() );
var fileText = LoaderUtils.decodeText( view );
var xmlData = new DOMParser().parseFromString( fileText, 'application/xml' );
if ( xmlData.documentElement.nodeName.toLowerCase() !== 'model' ) {
console.error( 'THREE.3MFLoader: Error loading 3MF - no 3MF document found: ', modelPart );
}
var modelNode = xmlData.querySelector( 'model' );
var extensions = {};
for ( var i = 0; i < modelNode.attributes.length; i ++ ) {
var attr = modelNode.attributes[ i ];
if ( attr.name.match( /^xmlns:(.+)$/ ) ) {
extensions[ attr.value ] = RegExp.$1;
}
}
var modelData = parseModelNode( modelNode );
modelData[ 'xml' ] = modelNode;
if ( 0 < Object.keys( extensions ).length ) {
modelData[ 'extensions' ] = extensions;
}
modelParts[ modelPart ] = modelData;
}
//
for ( var i = 0; i < texturesPartNames.length; i ++ ) {
var texturesPartName = texturesPartNames[ i ];
texturesParts[ texturesPartName ] = zip.file( texturesPartName ).asArrayBuffer();
}
return {
rels: rels,
modelRels: modelRels,
model: modelParts,
printTicket: printTicketParts,
texture: texturesParts,
other: otherParts
};
}
function parseRelsXml( relsFileText ) {
var relationships = [];
var relsXmlData = new DOMParser().parseFromString( relsFileText, 'application/xml' );
var relsNodes = relsXmlData.querySelectorAll( 'Relationship' );
for ( var i = 0; i < relsNodes.length; i ++ ) {
var relsNode = relsNodes[ i ];
var relationship = {
target: relsNode.getAttribute( 'Target' ), //required
id: relsNode.getAttribute( 'Id' ), //required
type: relsNode.getAttribute( 'Type' ) //required
};
relationships.push( relationship );
}
return relationships;
}
function parseMetadataNodes( metadataNodes ) {
var metadataData = {};
for ( var i = 0; i < metadataNodes.length; i ++ ) {
var metadataNode = metadataNodes[ i ];
var name = metadataNode.getAttribute( 'name' );
var validNames = [
'Title',
'Designer',
'Description',
'Copyright',
'LicenseTerms',
'Rating',
'CreationDate',
'ModificationDate'
];
if ( 0 <= validNames.indexOf( name ) ) {
metadataData[ name ] = metadataNode.textContent;
}
}
return metadataData;
}
function parseBasematerialsNode( basematerialsNode ) {
var basematerialsData = {
id: basematerialsNode.getAttribute( 'id' ), // required
basematerials: []
};
var basematerialNodes = basematerialsNode.querySelectorAll( 'base' );
for ( var i = 0; i < basematerialNodes.length; i ++ ) {
var basematerialNode = basematerialNodes[ i ];
var basematerialData = parseBasematerialNode( basematerialNode );
basematerialData.index = i; // the order and count of the material nodes form an implicit 0-based index
basematerialsData.basematerials.push( basematerialData );
}
return basematerialsData;
}
function parseTexture2DNode( texture2DNode ) {
var texture2dData = {
id: texture2DNode.getAttribute( 'id' ), // required
path: texture2DNode.getAttribute( 'path' ), // required
contenttype: texture2DNode.getAttribute( 'contenttype' ), // required
tilestyleu: texture2DNode.getAttribute( 'tilestyleu' ),
tilestylev: texture2DNode.getAttribute( 'tilestylev' ),
filter: texture2DNode.getAttribute( 'filter' ),
};
return texture2dData;
}
function parseTextures2DGroupNode( texture2DGroupNode ) {
var texture2DGroupData = {
id: texture2DGroupNode.getAttribute( 'id' ), // required
texid: texture2DGroupNode.getAttribute( 'texid' ), // required
displaypropertiesid: texture2DGroupNode.getAttribute( 'displaypropertiesid' )
};
var tex2coordNodes = texture2DGroupNode.querySelectorAll( 'tex2coord' );
var uvs = [];
for ( var i = 0; i < tex2coordNodes.length; i ++ ) {
var tex2coordNode = tex2coordNodes[ i ];
var u = tex2coordNode.getAttribute( 'u' );
var v = tex2coordNode.getAttribute( 'v' );
uvs.push( parseFloat( u ), parseFloat( v ) );
}
texture2DGroupData[ 'uvs' ] = new Float32Array( uvs );
return texture2DGroupData;
}
function parseColorGroupNode( colorGroupNode ) {
var colorGroupData = {
id: colorGroupNode.getAttribute( 'id' ), // required
displaypropertiesid: colorGroupNode.getAttribute( 'displaypropertiesid' )
};
var colorNodes = colorGroupNode.querySelectorAll( 'color' );
var colors = [];
var colorObject = new Color();
for ( var i = 0; i < colorNodes.length; i ++ ) {
var colorNode = colorNodes[ i ];
var color = colorNode.getAttribute( 'color' );
colorObject.setStyle( color.substring( 0, 7 ) );
colorObject.convertSRGBToLinear(); // color is in sRGB
colors.push( colorObject.r, colorObject.g, colorObject.b );
}
colorGroupData[ 'colors' ] = new Float32Array( colors );
return colorGroupData;
}
function parseMetallicDisplaypropertiesNode( metallicDisplaypropetiesNode ) {
var metallicDisplaypropertiesData = {
id: metallicDisplaypropetiesNode.getAttribute( 'id' ) // required
};
var metallicNodes = metallicDisplaypropetiesNode.querySelectorAll( 'pbmetallic' );
var metallicData = [];
for ( var i = 0; i < metallicNodes.length; i ++ ) {
var metallicNode = metallicNodes[ i ];
metallicData.push( {
name: metallicNode.getAttribute( 'name' ), // required
metallicness: parseFloat( metallicNode.getAttribute( 'metallicness' ) ), // required
roughness: parseFloat( metallicNode.getAttribute( 'roughness' ) ) // required
} );
}
metallicDisplaypropertiesData.data = metallicData;
return metallicDisplaypropertiesData;
}
function parseBasematerialNode( basematerialNode ) {
var basematerialData = {};
basematerialData[ 'name' ] = basematerialNode.getAttribute( 'name' ); // required
basematerialData[ 'displaycolor' ] = basematerialNode.getAttribute( 'displaycolor' ); // required
basematerialData[ 'displaypropertiesid' ] = basematerialNode.getAttribute( 'displaypropertiesid' );
return basematerialData;
}
function parseMeshNode( meshNode ) {
var meshData = {};
var vertices = [];
var vertexNodes = meshNode.querySelectorAll( 'vertices vertex' );
for ( var i = 0; i < vertexNodes.length; i ++ ) {
var vertexNode = vertexNodes[ i ];
var x = vertexNode.getAttribute( 'x' );
var y = vertexNode.getAttribute( 'y' );
var z = vertexNode.getAttribute( 'z' );
vertices.push( parseFloat( x ), parseFloat( y ), parseFloat( z ) );
}
meshData[ 'vertices' ] = new Float32Array( vertices );
var triangleProperties = [];
var triangles = [];
var triangleNodes = meshNode.querySelectorAll( 'triangles triangle' );
for ( var i = 0; i < triangleNodes.length; i ++ ) {
var triangleNode = triangleNodes[ i ];
var v1 = triangleNode.getAttribute( 'v1' );
var v2 = triangleNode.getAttribute( 'v2' );
var v3 = triangleNode.getAttribute( 'v3' );
var p1 = triangleNode.getAttribute( 'p1' );
var p2 = triangleNode.getAttribute( 'p2' );
var p3 = triangleNode.getAttribute( 'p3' );
var pid = triangleNode.getAttribute( 'pid' );
var triangleProperty = {};
triangleProperty[ 'v1' ] = parseInt( v1, 10 );
triangleProperty[ 'v2' ] = parseInt( v2, 10 );
triangleProperty[ 'v3' ] = parseInt( v3, 10 );
triangles.push( triangleProperty[ 'v1' ], triangleProperty[ 'v2' ], triangleProperty[ 'v3' ] );
// optional
if ( p1 ) {
triangleProperty[ 'p1' ] = parseInt( p1, 10 );
}
if ( p2 ) {
triangleProperty[ 'p2' ] = parseInt( p2, 10 );
}
if ( p3 ) {
triangleProperty[ 'p3' ] = parseInt( p3, 10 );
}
if ( pid ) {
triangleProperty[ 'pid' ] = pid;
}
if ( 0 < Object.keys( triangleProperty ).length ) {
triangleProperties.push( triangleProperty );
}
}
meshData[ 'triangleProperties' ] = triangleProperties;
meshData[ 'triangles' ] = new Uint32Array( triangles );
return meshData;
}
function parseComponentsNode( componentsNode ) {
var components = [];
var componentNodes = componentsNode.querySelectorAll( 'component' );
for ( var i = 0; i < componentNodes.length; i ++ ) {
var componentNode = componentNodes[ i ];
var componentData = parseComponentNode( componentNode );
components.push( componentData );
}
return components;
}
function parseComponentNode( componentNode ) {
var componentData = {};
componentData[ 'objectId' ] = componentNode.getAttribute( 'objectid' ); // required
var transform = componentNode.getAttribute( 'transform' );
if ( transform ) {
componentData[ 'transform' ] = parseTransform( transform );
}
return componentData;
}
function parseTransform( transform ) {
var t = [];
transform.split( ' ' ).forEach( function ( s ) {
t.push( parseFloat( s ) );
} );
var matrix = new Matrix4();
matrix.set(
t[ 0 ], t[ 3 ], t[ 6 ], t[ 9 ],
t[ 1 ], t[ 4 ], t[ 7 ], t[ 10 ],
t[ 2 ], t[ 5 ], t[ 8 ], t[ 11 ],
0.0, 0.0, 0.0, 1.0
);
return matrix;
}
function parseObjectNode( objectNode ) {
var objectData = {
type: objectNode.getAttribute( 'type' )
};
var id = objectNode.getAttribute( 'id' );
if ( id ) {
objectData[ 'id' ] = id;
}
var pid = objectNode.getAttribute( 'pid' );
if ( pid ) {
objectData[ 'pid' ] = pid;
}
var pindex = objectNode.getAttribute( 'pindex' );
if ( pindex ) {
objectData[ 'pindex' ] = pindex;
}
var thumbnail = objectNode.getAttribute( 'thumbnail' );
if ( thumbnail ) {
objectData[ 'thumbnail' ] = thumbnail;
}
var partnumber = objectNode.getAttribute( 'partnumber' );
if ( partnumber ) {
objectData[ 'partnumber' ] = partnumber;
}
var name = objectNode.getAttribute( 'name' );
if ( name ) {
objectData[ 'name' ] = name;
}
var meshNode = objectNode.querySelector( 'mesh' );
if ( meshNode ) {
objectData[ 'mesh' ] = parseMeshNode( meshNode );
}
var componentsNode = objectNode.querySelector( 'components' );
if ( componentsNode ) {
objectData[ 'components' ] = parseComponentsNode( componentsNode );
}
return objectData;
}
function parseResourcesNode( resourcesNode ) {
var resourcesData = {};
resourcesData[ 'basematerials' ] = {};
var basematerialsNodes = resourcesNode.querySelectorAll( 'basematerials' );
for ( var i = 0; i < basematerialsNodes.length; i ++ ) {
var basematerialsNode = basematerialsNodes[ i ];
var basematerialsData = parseBasematerialsNode( basematerialsNode );
resourcesData[ 'basematerials' ][ basematerialsData[ 'id' ] ] = basematerialsData;
}
//
resourcesData[ 'texture2d' ] = {};
var textures2DNodes = resourcesNode.querySelectorAll( 'texture2d' );
for ( var i = 0; i < textures2DNodes.length; i ++ ) {
var textures2DNode = textures2DNodes[ i ];
var texture2DData = parseTexture2DNode( textures2DNode );
resourcesData[ 'texture2d' ][ texture2DData[ 'id' ] ] = texture2DData;
}
//
resourcesData[ 'colorgroup' ] = {};
var colorGroupNodes = resourcesNode.querySelectorAll( 'colorgroup' );
for ( var i = 0; i < colorGroupNodes.length; i ++ ) {
var colorGroupNode = colorGroupNodes[ i ];
var colorGroupData = parseColorGroupNode( colorGroupNode );
resourcesData[ 'colorgroup' ][ colorGroupData[ 'id' ] ] = colorGroupData;
}
//
resourcesData[ 'pbmetallicdisplayproperties' ] = {};
var pbmetallicdisplaypropertiesNodes = resourcesNode.querySelectorAll( 'pbmetallicdisplayproperties' );
for ( var i = 0; i < pbmetallicdisplaypropertiesNodes.length; i ++ ) {
var pbmetallicdisplaypropertiesNode = pbmetallicdisplaypropertiesNodes[ i ];
var pbmetallicdisplaypropertiesData = parseMetallicDisplaypropertiesNode( pbmetallicdisplaypropertiesNode );
resourcesData[ 'pbmetallicdisplayproperties' ][ pbmetallicdisplaypropertiesData[ 'id' ] ] = pbmetallicdisplaypropertiesData;
}
//
resourcesData[ 'texture2dgroup' ] = {};
var textures2DGroupNodes = resourcesNode.querySelectorAll( 'texture2dgroup' );
for ( var i = 0; i < textures2DGroupNodes.length; i ++ ) {
var textures2DGroupNode = textures2DGroupNodes[ i ];
var textures2DGroupData = parseTextures2DGroupNode( textures2DGroupNode );
resourcesData[ 'texture2dgroup' ][ textures2DGroupData[ 'id' ] ] = textures2DGroupData;
}
//
resourcesData[ 'object' ] = {};
var objectNodes = resourcesNode.querySelectorAll( 'object' );
for ( var i = 0; i < objectNodes.length; i ++ ) {
var objectNode = objectNodes[ i ];
var objectData = parseObjectNode( objectNode );
resourcesData[ 'object' ][ objectData[ 'id' ] ] = objectData;
}
return resourcesData;
}
function parseBuildNode( buildNode ) {
var buildData = [];
var itemNodes = buildNode.querySelectorAll( 'item' );
for ( var i = 0; i < itemNodes.length; i ++ ) {
var itemNode = itemNodes[ i ];
var buildItem = {
objectId: itemNode.getAttribute( 'objectid' )
};
var transform = itemNode.getAttribute( 'transform' );
if ( transform ) {
buildItem[ 'transform' ] = parseTransform( transform );
}
buildData.push( buildItem );
}
return buildData;
}
function parseModelNode( modelNode ) {
var modelData = { unit: modelNode.getAttribute( 'unit' ) || 'millimeter' };
var metadataNodes = modelNode.querySelectorAll( 'metadata' );
if ( metadataNodes ) {
modelData[ 'metadata' ] = parseMetadataNodes( metadataNodes );
}
var resourcesNode = modelNode.querySelector( 'resources' );
if ( resourcesNode ) {
modelData[ 'resources' ] = parseResourcesNode( resourcesNode );
}
var buildNode = modelNode.querySelector( 'build' );
if ( buildNode ) {
modelData[ 'build' ] = parseBuildNode( buildNode );
}
return modelData;
}
function buildTexture( texture2dgroup, objects, modelData, textureData ) {
var texid = texture2dgroup.texid;
var texture2ds = modelData.resources.texture2d;
var texture2d = texture2ds[ texid ];
if ( texture2d ) {
var data = textureData[ texture2d.path ];
var type = texture2d.contenttype;
var blob = new Blob( [ data ], { type: type } );
var sourceURI = URL.createObjectURL( blob );
var texture = textureLoader.load( sourceURI, function () {
URL.revokeObjectURL( sourceURI );
} );
texture.encoding = sRGBEncoding;
// texture parameters
switch ( texture2d.tilestyleu ) {
case 'wrap':
texture.wrapS = RepeatWrapping;
break;
case 'mirror':
texture.wrapS = MirroredRepeatWrapping;
break;
case 'none':
case 'clamp':
texture.wrapS = ClampToEdgeWrapping;
break;
default:
texture.wrapS = RepeatWrapping;
}
switch ( texture2d.tilestylev ) {
case 'wrap':
texture.wrapT = RepeatWrapping;
break;
case 'mirror':
texture.wrapT = MirroredRepeatWrapping;
break;
case 'none':
case 'clamp':
texture.wrapT = ClampToEdgeWrapping;
break;
default:
texture.wrapT = RepeatWrapping;
}
switch ( texture2d.filter ) {
case 'auto':
texture.magFilter = LinearFilter;
texture.minFilter = LinearMipmapLinearFilter;
break;
case 'linear':
texture.magFilter = LinearFilter;
texture.minFilter = LinearFilter;
break;
case 'nearest':
texture.magFilter = NearestFilter;
texture.minFilter = NearestFilter;
break;
default:
texture.magFilter = LinearFilter;
texture.minFilter = LinearMipmapLinearFilter;
}
return texture;
} else {
return null;
}
}
function buildBasematerialsMeshes( basematerials, triangleProperties, modelData, meshData, textureData, objectData ) {
var objectPindex = objectData.pindex;
var materialMap = {};
for ( var i = 0, l = triangleProperties.length; i < l; i ++ ) {
var triangleProperty = triangleProperties[ i ];
var pindex = ( triangleProperty.p1 !== undefined ) ? triangleProperty.p1 : objectPindex;
if ( materialMap[ pindex ] === undefined ) materialMap[ pindex ] = [];
materialMap[ pindex ].push( triangleProperty );
}
//
var keys = Object.keys( materialMap );
var meshes = [];
for ( var i = 0, l = keys.length; i < l; i ++ ) {
var materialIndex = keys[ i ];
var trianglePropertiesProps = materialMap[ materialIndex ];
var basematerialData = basematerials.basematerials[ materialIndex ];
var material = getBuild( basematerialData, objects, modelData, textureData, objectData, buildBasematerial );
//
var geometry = new BufferGeometry();
var positionData = [];
var vertices = meshData.vertices;
for ( var j = 0, jl = trianglePropertiesProps.length; j < jl; j ++ ) {
var triangleProperty = trianglePropertiesProps[ j ];
positionData.push( vertices[ ( triangleProperty.v1 * 3 ) + 0 ] );
positionData.push( vertices[ ( triangleProperty.v1 * 3 ) + 1 ] );
positionData.push( vertices[ ( triangleProperty.v1 * 3 ) + 2 ] );
positionData.push( vertices[ ( triangleProperty.v2 * 3 ) + 0 ] );
positionData.push( vertices[ ( triangleProperty.v2 * 3 ) + 1 ] );
positionData.push( vertices[ ( triangleProperty.v2 * 3 ) + 2 ] );
positionData.push( vertices[ ( triangleProperty.v3 * 3 ) + 0 ] );
positionData.push( vertices[ ( triangleProperty.v3 * 3 ) + 1 ] );
positionData.push( vertices[ ( triangleProperty.v3 * 3 ) + 2 ] );
}
geometry.setAttribute( 'position', new Float32BufferAttribute( positionData, 3 ) );
//
var mesh = new Mesh( geometry, material );
meshes.push( mesh );
}
return meshes;
}
function buildTexturedMesh( texture2dgroup, triangleProperties, modelData, meshData, textureData, objectData ) {
// geometry
var geometry = new BufferGeometry();
var positionData = [];
var uvData = [];
var vertices = meshData.vertices;
var uvs = texture2dgroup.uvs;
for ( var i = 0, l = triangleProperties.length; i < l; i ++ ) {
var triangleProperty = triangleProperties[ i ];
positionData.push( vertices[ ( triangleProperty.v1 * 3 ) + 0 ] );
positionData.push( vertices[ ( triangleProperty.v1 * 3 ) + 1 ] );
positionData.push( vertices[ ( triangleProperty.v1 * 3 ) + 2 ] );
positionData.push( vertices[ ( triangleProperty.v2 * 3 ) + 0 ] );
positionData.push( vertices[ ( triangleProperty.v2 * 3 ) + 1 ] );
positionData.push( vertices[ ( triangleProperty.v2 * 3 ) + 2 ] );
positionData.push( vertices[ ( triangleProperty.v3 * 3 ) + 0 ] );
positionData.push( vertices[ ( triangleProperty.v3 * 3 ) + 1 ] );
positionData.push( vertices[ ( triangleProperty.v3 * 3 ) + 2 ] );
//
uvData.push( uvs[ ( triangleProperty.p1 * 2 ) + 0 ] );
uvData.push( uvs[ ( triangleProperty.p1 * 2 ) + 1 ] );
uvData.push( uvs[ ( triangleProperty.p2 * 2 ) + 0 ] );
uvData.push( uvs[ ( triangleProperty.p2 * 2 ) + 1 ] );
uvData.push( uvs[ ( triangleProperty.p3 * 2 ) + 0 ] );
uvData.push( uvs[ ( triangleProperty.p3 * 2 ) + 1 ] );
}
geometry.setAttribute( 'position', new Float32BufferAttribute( positionData, 3 ) );
geometry.setAttribute( 'uv', new Float32BufferAttribute( uvData, 2 ) );
// material
var texture = getBuild( texture2dgroup, objects, modelData, textureData, objectData, buildTexture );
var material = new MeshPhongMaterial( { map: texture, flatShading: true } );
// mesh
var mesh = new Mesh( geometry, material );
return mesh;
}
function buildVertexColorMesh( colorgroup, triangleProperties, modelData, meshData ) {
// geometry
var geometry = new BufferGeometry();
var positionData = [];
var colorData = [];
var vertices = meshData.vertices;
var colors = colorgroup.colors;
for ( var i = 0, l = triangleProperties.length; i < l; i ++ ) {
var triangleProperty = triangleProperties[ i ];
var v1 = triangleProperty.v1;
var v2 = triangleProperty.v2;
var v3 = triangleProperty.v3;
positionData.push( vertices[ ( v1 * 3 ) + 0 ] );
positionData.push( vertices[ ( v1 * 3 ) + 1 ] );
positionData.push( vertices[ ( v1 * 3 ) + 2 ] );
positionData.push( vertices[ ( v2 * 3 ) + 0 ] );
positionData.push( vertices[ ( v2 * 3 ) + 1 ] );
positionData.push( vertices[ ( v2 * 3 ) + 2 ] );
positionData.push( vertices[ ( v3 * 3 ) + 0 ] );
positionData.push( vertices[ ( v3 * 3 ) + 1 ] );
positionData.push( vertices[ ( v3 * 3 ) + 2 ] );
//
var p1 = triangleProperty.p1;
var p2 = triangleProperty.p2;
var p3 = triangleProperty.p3;
colorData.push( colors[ ( p1 * 3 ) + 0 ] );
colorData.push( colors[ ( p1 * 3 ) + 1 ] );
colorData.push( colors[ ( p1 * 3 ) + 2 ] );
colorData.push( colors[ ( ( p2 || p1 ) * 3 ) + 0 ] );
colorData.push( colors[ ( ( p2 || p1 ) * 3 ) + 1 ] );
colorData.push( colors[ ( ( p2 || p1 ) * 3 ) + 2 ] );
colorData.push( colors[ ( ( p3 || p1 ) * 3 ) + 0 ] );
colorData.push( colors[ ( ( p3 || p1 ) * 3 ) + 1 ] );
colorData.push( colors[ ( ( p3 || p1 ) * 3 ) + 2 ] );
}
geometry.setAttribute( 'position', new Float32BufferAttribute( positionData, 3 ) );
geometry.setAttribute( 'color', new Float32BufferAttribute( colorData, 3 ) );
// material
var material = new MeshPhongMaterial( { vertexColors: true, flatShading: true } );
// mesh
var mesh = new Mesh( geometry, material );
return mesh;
}
function buildDefaultMesh( meshData ) {
var geometry = new BufferGeometry();
geometry.setIndex( new BufferAttribute( meshData[ 'triangles' ], 1 ) );
geometry.setAttribute( 'position', new BufferAttribute( meshData[ 'vertices' ], 3 ) );
var material = new MeshPhongMaterial( { color: 0xaaaaff, flatShading: true } );
var mesh = new Mesh( geometry, material );
return mesh;
}
function buildMeshes( resourceMap, modelData, meshData, textureData, objectData ) {
var keys = Object.keys( resourceMap );
var meshes = [];
for ( var i = 0, il = keys.length; i < il; i ++ ) {
var resourceId = keys[ i ];
var triangleProperties = resourceMap[ resourceId ];
var resourceType = getResourceType( resourceId, modelData );
switch ( resourceType ) {
case 'material':
var basematerials = modelData.resources.basematerials[ resourceId ];
var newMeshes = buildBasematerialsMeshes( basematerials, triangleProperties, modelData, meshData, textureData, objectData );
for ( var j = 0, jl = newMeshes.length; j < jl; j ++ ) {
meshes.push( newMeshes[ j ] );
}
break;
case 'texture':
var texture2dgroup = modelData.resources.texture2dgroup[ resourceId ];
meshes.push( buildTexturedMesh( texture2dgroup, triangleProperties, modelData, meshData, textureData, objectData ) );
break;
case 'vertexColors':
var colorgroup = modelData.resources.colorgroup[ resourceId ];
meshes.push( buildVertexColorMesh( colorgroup, triangleProperties, modelData, meshData ) );
break;
case 'default':
meshes.push( buildDefaultMesh( meshData ) );
break;
default:
console.error( 'THREE.3MFLoader: Unsupported resource type.' );
}
}
return meshes;
}
function getResourceType( pid, modelData ) {
if ( modelData.resources.texture2dgroup[ pid ] !== undefined ) {
return 'texture';
} else if ( modelData.resources.basematerials[ pid ] !== undefined ) {
return 'material';
} else if ( modelData.resources.colorgroup[ pid ] !== undefined ) {
return 'vertexColors';
} else if ( pid === 'default' ) {
return 'default';
} else {
return undefined;
}
}
function analyzeObject( modelData, meshData, objectData ) {
var resourceMap = {};
var triangleProperties = meshData[ 'triangleProperties' ];
var objectPid = objectData.pid;
for ( var i = 0, l = triangleProperties.length; i < l; i ++ ) {
var triangleProperty = triangleProperties[ i ];
var pid = ( triangleProperty.pid !== undefined ) ? triangleProperty.pid : objectPid;
if ( pid === undefined ) pid = 'default';
if ( resourceMap[ pid ] === undefined ) resourceMap[ pid ] = [];
resourceMap[ pid ].push( triangleProperty );
}
return resourceMap;
}
function buildGroup( meshData, objects, modelData, textureData, objectData ) {
var group = new Group();
var resourceMap = analyzeObject( modelData, meshData, objectData );
var meshes = buildMeshes( resourceMap, modelData, meshData, textureData, objectData );
for ( var i = 0, l = meshes.length; i < l; i ++ ) {
group.add( meshes[ i ] );
}
return group;
}
function applyExtensions( extensions, meshData, modelXml ) {
if ( ! extensions ) {
return;
}
var availableExtensions = [];
var keys = Object.keys( extensions );
for ( var i = 0; i < keys.length; i ++ ) {
var ns = keys[ i ];
for ( var j = 0; j < scope.availableExtensions.length; j ++ ) {
var extension = scope.availableExtensions[ j ];
if ( extension.ns === ns ) {
availableExtensions.push( extension );
}
}
}
for ( var i = 0; i < availableExtensions.length; i ++ ) {
var extension = availableExtensions[ i ];
extension.apply( modelXml, extensions[ extension[ 'ns' ] ], meshData );
}
}
function getBuild( data, objects, modelData, textureData, objectData, builder ) {
if ( data.build !== undefined ) return data.build;
data.build = builder( data, objects, modelData, textureData, objectData );
return data.build;
}
function buildBasematerial( materialData, objects, modelData ) {
var material;
var displaypropertiesid = materialData.displaypropertiesid;
var pbmetallicdisplayproperties = modelData.resources.pbmetallicdisplayproperties;
if ( displaypropertiesid !== null && pbmetallicdisplayproperties[ displaypropertiesid ] !== undefined ) {
// metallic display property, use StandardMaterial
var pbmetallicdisplayproperty = pbmetallicdisplayproperties[ displaypropertiesid ];
var metallicData = pbmetallicdisplayproperty.data[ materialData.index ];
material = new MeshStandardMaterial( { flatShading: true, roughness: metallicData.roughness, metalness: metallicData.metallicness } );
} else {
// otherwise use PhongMaterial
material = new MeshPhongMaterial( { flatShading: true } );
}
material.name = materialData.name;
// displaycolor MUST be specified with a value of a 6 or 8 digit hexadecimal number, e.g. "#RRGGBB" or "#RRGGBBAA"
var displaycolor = materialData.displaycolor;
var color = displaycolor.substring( 0, 7 );
material.color.setStyle( color );
material.color.convertSRGBToLinear(); // displaycolor is in sRGB
// process alpha if set
if ( displaycolor.length === 9 ) {
material.opacity = parseInt( displaycolor.charAt( 7 ) + displaycolor.charAt( 8 ), 16 ) / 255;
}
return material;
}
function buildComposite( compositeData, objects, modelData, textureData ) {
var composite = new Group();
for ( var j = 0; j < compositeData.length; j ++ ) {
var component = compositeData[ j ];
var build = objects[ component.objectId ];
if ( build === undefined ) {
buildObject( component.objectId, objects, modelData, textureData );
build = objects[ component.objectId ];
}
var object3D = build.clone();
// apply component transform
var transform = component.transform;
if ( transform ) {
object3D.applyMatrix4( transform );
}
composite.add( object3D );
}
return composite;
}
function buildObject( objectId, objects, modelData, textureData ) {
var objectData = modelData[ 'resources' ][ 'object' ][ objectId ];
if ( objectData[ 'mesh' ] ) {
var meshData = objectData[ 'mesh' ];
var extensions = modelData[ 'extensions' ];
var modelXml = modelData[ 'xml' ];
applyExtensions( extensions, meshData, modelXml );
objects[ objectData.id ] = getBuild( meshData, objects, modelData, textureData, objectData, buildGroup );
} else {
var compositeData = objectData[ 'components' ];
objects[ objectData.id ] = getBuild( compositeData, objects, modelData, textureData, objectData, buildComposite );
}
}
function buildObjects( data3mf ) {
var modelsData = data3mf.model;
var modelRels = data3mf.modelRels;
var objects = {};
var modelsKeys = Object.keys( modelsData );
var textureData = {};
// evaluate model relationships to textures
if ( modelRels ) {
for ( var i = 0, l = modelRels.length; i < l; i ++ ) {
var modelRel = modelRels[ i ];
var textureKey = modelRel.target.substring( 1 );
if ( data3mf.texture[ textureKey ] ) {
textureData[ modelRel.target ] = data3mf.texture[ textureKey ];
}
}
}
// start build
for ( var i = 0; i < modelsKeys.length; i ++ ) {
var modelsKey = modelsKeys[ i ];
var modelData = modelsData[ modelsKey ];
var objectIds = Object.keys( modelData[ 'resources' ][ 'object' ] );
for ( var j = 0; j < objectIds.length; j ++ ) {
var objectId = objectIds[ j ];
buildObject( objectId, objects, modelData, textureData );
}
}
return objects;
}
function build( objects, data3mf ) {
var group = new Group();
var relationship = data3mf[ 'rels' ][ 0 ];
var buildData = data3mf.model[ relationship[ 'target' ].substring( 1 ) ][ 'build' ];
for ( var i = 0; i < buildData.length; i ++ ) {
var buildItem = buildData[ i ];
var object3D = objects[ buildItem[ 'objectId' ] ];
// apply transform
var transform = buildItem[ 'transform' ];
if ( transform ) {
object3D.applyMatrix4( transform );
}
group.add( object3D );
}
return group;
}
var data3mf = loadDocument( data );
var objects = buildObjects( data3mf );
return build( objects, data3mf );
},
addExtension: function ( extension ) {
this.availableExtensions.push( extension );
}
} );
Example #6
Source File: FBXLoader.js From canvas with Apache License 2.0 | 4 votes |
FBXLoader = ( function () {
var fbxTree;
var connections;
var sceneGraph;
function FBXLoader( manager ) {
Loader.call( this, manager );
}
FBXLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: FBXLoader,
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path;
var loader = new FileLoader( this.manager );
loader.setPath( scope.path );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( buffer ) {
try {
onLoad( scope.parse( buffer, path ) );
} catch ( error ) {
setTimeout( function () {
if ( onError ) onError( error );
scope.manager.itemError( url );
}, 0 );
}
}, onProgress, onError );
},
parse: function ( FBXBuffer, path ) {
if ( isFbxFormatBinary( FBXBuffer ) ) {
fbxTree = new BinaryParser().parse( FBXBuffer );
} else {
var FBXText = convertArrayBufferToString( FBXBuffer );
if ( ! isFbxFormatASCII( FBXText ) ) {
throw new Error( 'THREE.FBXLoader: Unknown format.' );
}
if ( getFbxVersion( FBXText ) < 7000 ) {
throw new Error( 'THREE.FBXLoader: FBX version not supported, FileVersion: ' + getFbxVersion( FBXText ) );
}
fbxTree = new TextParser().parse( FBXText );
}
// console.log( fbxTree );
var textureLoader = new TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
return new FBXTreeParser( textureLoader, this.manager ).parse( fbxTree );
}
} );
// Parse the FBXTree object returned by the BinaryParser or TextParser and return a Group
function FBXTreeParser( textureLoader, manager ) {
this.textureLoader = textureLoader;
this.manager = manager;
}
FBXTreeParser.prototype = {
constructor: FBXTreeParser,
parse: function () {
connections = this.parseConnections();
var images = this.parseImages();
var textures = this.parseTextures( images );
var materials = this.parseMaterials( textures );
var deformers = this.parseDeformers();
var geometryMap = new GeometryParser().parse( deformers );
this.parseScene( deformers, geometryMap, materials );
return sceneGraph;
},
// Parses FBXTree.Connections which holds parent-child connections between objects (e.g. material -> texture, model->geometry )
// and details the connection type
parseConnections: function () {
var connectionMap = new Map();
if ( 'Connections' in fbxTree ) {
var rawConnections = fbxTree.Connections.connections;
rawConnections.forEach( function ( rawConnection ) {
var fromID = rawConnection[ 0 ];
var toID = rawConnection[ 1 ];
var relationship = rawConnection[ 2 ];
if ( ! connectionMap.has( fromID ) ) {
connectionMap.set( fromID, {
parents: [],
children: []
} );
}
var parentRelationship = { ID: toID, relationship: relationship };
connectionMap.get( fromID ).parents.push( parentRelationship );
if ( ! connectionMap.has( toID ) ) {
connectionMap.set( toID, {
parents: [],
children: []
} );
}
var childRelationship = { ID: fromID, relationship: relationship };
connectionMap.get( toID ).children.push( childRelationship );
} );
}
return connectionMap;
},
// Parse FBXTree.Objects.Video for embedded image data
// These images are connected to textures in FBXTree.Objects.Textures
// via FBXTree.Connections.
parseImages: function () {
var images = {};
var blobs = {};
if ( 'Video' in fbxTree.Objects ) {
var videoNodes = fbxTree.Objects.Video;
for ( var nodeID in videoNodes ) {
var videoNode = videoNodes[ nodeID ];
var id = parseInt( nodeID );
images[ id ] = videoNode.RelativeFilename || videoNode.Filename;
// raw image data is in videoNode.Content
if ( 'Content' in videoNode ) {
var arrayBufferContent = ( videoNode.Content instanceof ArrayBuffer ) && ( videoNode.Content.byteLength > 0 );
var base64Content = ( typeof videoNode.Content === 'string' ) && ( videoNode.Content !== '' );
if ( arrayBufferContent || base64Content ) {
var image = this.parseImage( videoNodes[ nodeID ] );
blobs[ videoNode.RelativeFilename || videoNode.Filename ] = image;
}
}
}
}
for ( var id in images ) {
var filename = images[ id ];
if ( blobs[ filename ] !== undefined ) images[ id ] = blobs[ filename ];
else images[ id ] = images[ id ].split( '\\' ).pop();
}
return images;
},
// Parse embedded image data in FBXTree.Video.Content
parseImage: function ( videoNode ) {
var content = videoNode.Content;
var fileName = videoNode.RelativeFilename || videoNode.Filename;
var extension = fileName.slice( fileName.lastIndexOf( '.' ) + 1 ).toLowerCase();
var type;
switch ( extension ) {
case 'bmp':
type = 'image/bmp';
break;
case 'jpg':
case 'jpeg':
type = 'image/jpeg';
break;
case 'png':
type = 'image/png';
break;
case 'tif':
type = 'image/tiff';
break;
case 'tga':
if ( this.manager.getHandler( '.tga' ) === null ) {
console.warn( 'FBXLoader: TGA loader not found, skipping ', fileName );
}
type = 'image/tga';
break;
default:
console.warn( 'FBXLoader: Image type "' + extension + '" is not supported.' );
return;
}
if ( typeof content === 'string' ) { // ASCII format
return 'data:' + type + ';base64,' + content;
} else { // Binary Format
var array = new Uint8Array( content );
return window.URL.createObjectURL( new Blob( [ array ], { type: type } ) );
}
},
// Parse nodes in FBXTree.Objects.Texture
// These contain details such as UV scaling, cropping, rotation etc and are connected
// to images in FBXTree.Objects.Video
parseTextures: function ( images ) {
var textureMap = new Map();
if ( 'Texture' in fbxTree.Objects ) {
var textureNodes = fbxTree.Objects.Texture;
for ( var nodeID in textureNodes ) {
var texture = this.parseTexture( textureNodes[ nodeID ], images );
textureMap.set( parseInt( nodeID ), texture );
}
}
return textureMap;
},
// Parse individual node in FBXTree.Objects.Texture
parseTexture: function ( textureNode, images ) {
var texture = this.loadTexture( textureNode, images );
texture.ID = textureNode.id;
texture.name = textureNode.attrName;
var wrapModeU = textureNode.WrapModeU;
var wrapModeV = textureNode.WrapModeV;
var valueU = wrapModeU !== undefined ? wrapModeU.value : 0;
var valueV = wrapModeV !== undefined ? wrapModeV.value : 0;
// http://download.autodesk.com/us/fbx/SDKdocs/FBX_SDK_Help/files/fbxsdkref/class_k_fbx_texture.html#889640e63e2e681259ea81061b85143a
// 0: repeat(default), 1: clamp
texture.wrapS = valueU === 0 ? RepeatWrapping : ClampToEdgeWrapping;
texture.wrapT = valueV === 0 ? RepeatWrapping : ClampToEdgeWrapping;
if ( 'Scaling' in textureNode ) {
var values = textureNode.Scaling.value;
texture.repeat.x = values[ 0 ];
texture.repeat.y = values[ 1 ];
}
return texture;
},
// load a texture specified as a blob or data URI, or via an external URL using TextureLoader
loadTexture: function ( textureNode, images ) {
var fileName;
var currentPath = this.textureLoader.path;
var children = connections.get( textureNode.id ).children;
if ( children !== undefined && children.length > 0 && images[ children[ 0 ].ID ] !== undefined ) {
fileName = images[ children[ 0 ].ID ];
if ( fileName.indexOf( 'blob:' ) === 0 || fileName.indexOf( 'data:' ) === 0 ) {
this.textureLoader.setPath( undefined );
}
}
var texture;
var extension = textureNode.FileName.slice( - 3 ).toLowerCase();
if ( extension === 'tga' ) {
var loader = this.manager.getHandler( '.tga' );
if ( loader === null ) {
console.warn( 'FBXLoader: TGA loader not found, creating placeholder texture for', textureNode.RelativeFilename );
texture = new Texture();
} else {
texture = loader.load( fileName );
}
} else if ( extension === 'psd' ) {
console.warn( 'FBXLoader: PSD textures are not supported, creating placeholder texture for', textureNode.RelativeFilename );
texture = new Texture();
} else {
texture = this.textureLoader.load( fileName );
}
this.textureLoader.setPath( currentPath );
return texture;
},
// Parse nodes in FBXTree.Objects.Material
parseMaterials: function ( textureMap ) {
var materialMap = new Map();
if ( 'Material' in fbxTree.Objects ) {
var materialNodes = fbxTree.Objects.Material;
for ( var nodeID in materialNodes ) {
var material = this.parseMaterial( materialNodes[ nodeID ], textureMap );
if ( material !== null ) materialMap.set( parseInt( nodeID ), material );
}
}
return materialMap;
},
// Parse single node in FBXTree.Objects.Material
// Materials are connected to texture maps in FBXTree.Objects.Textures
// FBX format currently only supports Lambert and Phong shading models
parseMaterial: function ( materialNode, textureMap ) {
var ID = materialNode.id;
var name = materialNode.attrName;
var type = materialNode.ShadingModel;
// Case where FBX wraps shading model in property object.
if ( typeof type === 'object' ) {
type = type.value;
}
// Ignore unused materials which don't have any connections.
if ( ! connections.has( ID ) ) return null;
var parameters = this.parseParameters( materialNode, textureMap, ID );
var material;
switch ( type.toLowerCase() ) {
case 'phong':
material = new MeshPhongMaterial();
break;
case 'lambert':
material = new MeshLambertMaterial();
break;
default:
console.warn( 'THREE.FBXLoader: unknown material type "%s". Defaulting to MeshPhongMaterial.', type );
material = new MeshPhongMaterial();
break;
}
material.setValues( parameters );
material.name = name;
return material;
},
// Parse FBX material and return parameters suitable for a three.js material
// Also parse the texture map and return any textures associated with the material
parseParameters: function ( materialNode, textureMap, ID ) {
var parameters = {};
if ( materialNode.BumpFactor ) {
parameters.bumpScale = materialNode.BumpFactor.value;
}
if ( materialNode.Diffuse ) {
parameters.color = new Color().fromArray( materialNode.Diffuse.value );
} else if ( materialNode.DiffuseColor && materialNode.DiffuseColor.type === 'Color' ) {
// The blender exporter exports diffuse here instead of in materialNode.Diffuse
parameters.color = new Color().fromArray( materialNode.DiffuseColor.value );
}
if ( materialNode.DisplacementFactor ) {
parameters.displacementScale = materialNode.DisplacementFactor.value;
}
if ( materialNode.Emissive ) {
parameters.emissive = new Color().fromArray( materialNode.Emissive.value );
} else if ( materialNode.EmissiveColor && materialNode.EmissiveColor.type === 'Color' ) {
// The blender exporter exports emissive color here instead of in materialNode.Emissive
parameters.emissive = new Color().fromArray( materialNode.EmissiveColor.value );
}
if ( materialNode.EmissiveFactor ) {
parameters.emissiveIntensity = parseFloat( materialNode.EmissiveFactor.value );
}
if ( materialNode.Opacity ) {
parameters.opacity = parseFloat( materialNode.Opacity.value );
}
if ( parameters.opacity < 1.0 ) {
parameters.transparent = true;
}
if ( materialNode.ReflectionFactor ) {
parameters.reflectivity = materialNode.ReflectionFactor.value;
}
if ( materialNode.Shininess ) {
parameters.shininess = materialNode.Shininess.value;
}
if ( materialNode.Specular ) {
parameters.specular = new Color().fromArray( materialNode.Specular.value );
} else if ( materialNode.SpecularColor && materialNode.SpecularColor.type === 'Color' ) {
// The blender exporter exports specular color here instead of in materialNode.Specular
parameters.specular = new Color().fromArray( materialNode.SpecularColor.value );
}
var scope = this;
connections.get( ID ).children.forEach( function ( child ) {
var type = child.relationship;
switch ( type ) {
case 'Bump':
parameters.bumpMap = scope.getTexture( textureMap, child.ID );
break;
case 'Maya|TEX_ao_map':
parameters.aoMap = scope.getTexture( textureMap, child.ID );
break;
case 'DiffuseColor':
case 'Maya|TEX_color_map':
parameters.map = scope.getTexture( textureMap, child.ID );
parameters.map.encoding = sRGBEncoding;
break;
case 'DisplacementColor':
parameters.displacementMap = scope.getTexture( textureMap, child.ID );
break;
case 'EmissiveColor':
parameters.emissiveMap = scope.getTexture( textureMap, child.ID );
parameters.emissiveMap.encoding = sRGBEncoding;
break;
case 'NormalMap':
case 'Maya|TEX_normal_map':
parameters.normalMap = scope.getTexture( textureMap, child.ID );
break;
case 'ReflectionColor':
parameters.envMap = scope.getTexture( textureMap, child.ID );
parameters.envMap.mapping = EquirectangularReflectionMapping;
parameters.envMap.encoding = sRGBEncoding;
break;
case 'SpecularColor':
parameters.specularMap = scope.getTexture( textureMap, child.ID );
parameters.specularMap.encoding = sRGBEncoding;
break;
case 'TransparentColor':
case 'TransparencyFactor':
parameters.alphaMap = scope.getTexture( textureMap, child.ID );
parameters.transparent = true;
break;
case 'AmbientColor':
case 'ShininessExponent': // AKA glossiness map
case 'SpecularFactor': // AKA specularLevel
case 'VectorDisplacementColor': // NOTE: Seems to be a copy of DisplacementColor
default:
console.warn( 'THREE.FBXLoader: %s map is not supported in three.js, skipping texture.', type );
break;
}
} );
return parameters;
},
// get a texture from the textureMap for use by a material.
getTexture: function ( textureMap, id ) {
// if the texture is a layered texture, just use the first layer and issue a warning
if ( 'LayeredTexture' in fbxTree.Objects && id in fbxTree.Objects.LayeredTexture ) {
console.warn( 'THREE.FBXLoader: layered textures are not supported in three.js. Discarding all but first layer.' );
id = connections.get( id ).children[ 0 ].ID;
}
return textureMap.get( id );
},
// Parse nodes in FBXTree.Objects.Deformer
// Deformer node can contain skinning or Vertex Cache animation data, however only skinning is supported here
// Generates map of Skeleton-like objects for use later when generating and binding skeletons.
parseDeformers: function () {
var skeletons = {};
var morphTargets = {};
if ( 'Deformer' in fbxTree.Objects ) {
var DeformerNodes = fbxTree.Objects.Deformer;
for ( var nodeID in DeformerNodes ) {
var deformerNode = DeformerNodes[ nodeID ];
var relationships = connections.get( parseInt( nodeID ) );
if ( deformerNode.attrType === 'Skin' ) {
var skeleton = this.parseSkeleton( relationships, DeformerNodes );
skeleton.ID = nodeID;
if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: skeleton attached to more than one geometry is not supported.' );
skeleton.geometryID = relationships.parents[ 0 ].ID;
skeletons[ nodeID ] = skeleton;
} else if ( deformerNode.attrType === 'BlendShape' ) {
var morphTarget = {
id: nodeID,
};
morphTarget.rawTargets = this.parseMorphTargets( relationships, DeformerNodes );
morphTarget.id = nodeID;
if ( relationships.parents.length > 1 ) console.warn( 'THREE.FBXLoader: morph target attached to more than one geometry is not supported.' );
morphTargets[ nodeID ] = morphTarget;
}
}
}
return {
skeletons: skeletons,
morphTargets: morphTargets,
};
},
// Parse single nodes in FBXTree.Objects.Deformer
// The top level skeleton node has type 'Skin' and sub nodes have type 'Cluster'
// Each skin node represents a skeleton and each cluster node represents a bone
parseSkeleton: function ( relationships, deformerNodes ) {
var rawBones = [];
relationships.children.forEach( function ( child ) {
var boneNode = deformerNodes[ child.ID ];
if ( boneNode.attrType !== 'Cluster' ) return;
var rawBone = {
ID: child.ID,
indices: [],
weights: [],
transformLink: new Matrix4().fromArray( boneNode.TransformLink.a ),
// transform: new Matrix4().fromArray( boneNode.Transform.a ),
// linkMode: boneNode.Mode,
};
if ( 'Indexes' in boneNode ) {
rawBone.indices = boneNode.Indexes.a;
rawBone.weights = boneNode.Weights.a;
}
rawBones.push( rawBone );
} );
return {
rawBones: rawBones,
bones: []
};
},
// The top level morph deformer node has type "BlendShape" and sub nodes have type "BlendShapeChannel"
parseMorphTargets: function ( relationships, deformerNodes ) {
var rawMorphTargets = [];
for ( var i = 0; i < relationships.children.length; i ++ ) {
var child = relationships.children[ i ];
var morphTargetNode = deformerNodes[ child.ID ];
var rawMorphTarget = {
name: morphTargetNode.attrName,
initialWeight: morphTargetNode.DeformPercent,
id: morphTargetNode.id,
fullWeights: morphTargetNode.FullWeights.a
};
if ( morphTargetNode.attrType !== 'BlendShapeChannel' ) return;
rawMorphTarget.geoID = connections.get( parseInt( child.ID ) ).children.filter( function ( child ) {
return child.relationship === undefined;
} )[ 0 ].ID;
rawMorphTargets.push( rawMorphTarget );
}
return rawMorphTargets;
},
// create the main Group() to be returned by the loader
parseScene: function ( deformers, geometryMap, materialMap ) {
sceneGraph = new Group();
var modelMap = this.parseModels( deformers.skeletons, geometryMap, materialMap );
var modelNodes = fbxTree.Objects.Model;
var scope = this;
modelMap.forEach( function ( model ) {
var modelNode = modelNodes[ model.ID ];
scope.setLookAtProperties( model, modelNode );
var parentConnections = connections.get( model.ID ).parents;
parentConnections.forEach( function ( connection ) {
var parent = modelMap.get( connection.ID );
if ( parent !== undefined ) parent.add( model );
} );
if ( model.parent === null ) {
sceneGraph.add( model );
}
} );
this.bindSkeleton( deformers.skeletons, geometryMap, modelMap );
this.createAmbientLight();
this.setupMorphMaterials();
sceneGraph.traverse( function ( node ) {
if ( node.userData.transformData ) {
if ( node.parent ) node.userData.transformData.parentMatrixWorld = node.parent.matrix;
var transform = generateTransform( node.userData.transformData );
node.applyMatrix4( transform );
}
} );
var animations = new AnimationParser().parse();
// if all the models where already combined in a single group, just return that
if ( sceneGraph.children.length === 1 && sceneGraph.children[ 0 ].isGroup ) {
sceneGraph.children[ 0 ].animations = animations;
sceneGraph = sceneGraph.children[ 0 ];
}
sceneGraph.animations = animations;
},
// parse nodes in FBXTree.Objects.Model
parseModels: function ( skeletons, geometryMap, materialMap ) {
var modelMap = new Map();
var modelNodes = fbxTree.Objects.Model;
for ( var nodeID in modelNodes ) {
var id = parseInt( nodeID );
var node = modelNodes[ nodeID ];
var relationships = connections.get( id );
var model = this.buildSkeleton( relationships, skeletons, id, node.attrName );
if ( ! model ) {
switch ( node.attrType ) {
case 'Camera':
model = this.createCamera( relationships );
break;
case 'Light':
model = this.createLight( relationships );
break;
case 'Mesh':
model = this.createMesh( relationships, geometryMap, materialMap );
break;
case 'NurbsCurve':
model = this.createCurve( relationships, geometryMap );
break;
case 'LimbNode':
case 'Root':
model = new Bone();
break;
case 'Null':
default:
model = new Group();
break;
}
model.name = node.attrName ? PropertyBinding.sanitizeNodeName( node.attrName ) : '';
model.ID = id;
}
this.getTransformData( model, node );
modelMap.set( id, model );
}
return modelMap;
},
buildSkeleton: function ( relationships, skeletons, id, name ) {
var bone = null;
relationships.parents.forEach( function ( parent ) {
for ( var ID in skeletons ) {
var skeleton = skeletons[ ID ];
skeleton.rawBones.forEach( function ( rawBone, i ) {
if ( rawBone.ID === parent.ID ) {
var subBone = bone;
bone = new Bone();
bone.matrixWorld.copy( rawBone.transformLink );
// set name and id here - otherwise in cases where "subBone" is created it will not have a name / id
bone.name = name ? PropertyBinding.sanitizeNodeName( name ) : '';
bone.ID = id;
skeleton.bones[ i ] = bone;
// In cases where a bone is shared between multiple meshes
// duplicate the bone here and and it as a child of the first bone
if ( subBone !== null ) {
bone.add( subBone );
}
}
} );
}
} );
return bone;
},
// create a PerspectiveCamera or OrthographicCamera
createCamera: function ( relationships ) {
var model;
var cameraAttribute;
relationships.children.forEach( function ( child ) {
var attr = fbxTree.Objects.NodeAttribute[ child.ID ];
if ( attr !== undefined ) {
cameraAttribute = attr;
}
} );
if ( cameraAttribute === undefined ) {
model = new Object3D();
} else {
var type = 0;
if ( cameraAttribute.CameraProjectionType !== undefined && cameraAttribute.CameraProjectionType.value === 1 ) {
type = 1;
}
var nearClippingPlane = 1;
if ( cameraAttribute.NearPlane !== undefined ) {
nearClippingPlane = cameraAttribute.NearPlane.value / 1000;
}
var farClippingPlane = 1000;
if ( cameraAttribute.FarPlane !== undefined ) {
farClippingPlane = cameraAttribute.FarPlane.value / 1000;
}
var width = window.innerWidth;
var height = window.innerHeight;
if ( cameraAttribute.AspectWidth !== undefined && cameraAttribute.AspectHeight !== undefined ) {
width = cameraAttribute.AspectWidth.value;
height = cameraAttribute.AspectHeight.value;
}
var aspect = width / height;
var fov = 45;
if ( cameraAttribute.FieldOfView !== undefined ) {
fov = cameraAttribute.FieldOfView.value;
}
var focalLength = cameraAttribute.FocalLength ? cameraAttribute.FocalLength.value : null;
switch ( type ) {
case 0: // Perspective
model = new PerspectiveCamera( fov, aspect, nearClippingPlane, farClippingPlane );
if ( focalLength !== null ) model.setFocalLength( focalLength );
break;
case 1: // Orthographic
model = new OrthographicCamera( - width / 2, width / 2, height / 2, - height / 2, nearClippingPlane, farClippingPlane );
break;
default:
console.warn( 'THREE.FBXLoader: Unknown camera type ' + type + '.' );
model = new Object3D();
break;
}
}
return model;
},
// Create a DirectionalLight, PointLight or SpotLight
createLight: function ( relationships ) {
var model;
var lightAttribute;
relationships.children.forEach( function ( child ) {
var attr = fbxTree.Objects.NodeAttribute[ child.ID ];
if ( attr !== undefined ) {
lightAttribute = attr;
}
} );
if ( lightAttribute === undefined ) {
model = new Object3D();
} else {
var type;
// LightType can be undefined for Point lights
if ( lightAttribute.LightType === undefined ) {
type = 0;
} else {
type = lightAttribute.LightType.value;
}
var color = 0xffffff;
if ( lightAttribute.Color !== undefined ) {
color = new Color().fromArray( lightAttribute.Color.value );
}
var intensity = ( lightAttribute.Intensity === undefined ) ? 1 : lightAttribute.Intensity.value / 100;
// light disabled
if ( lightAttribute.CastLightOnObject !== undefined && lightAttribute.CastLightOnObject.value === 0 ) {
intensity = 0;
}
var distance = 0;
if ( lightAttribute.FarAttenuationEnd !== undefined ) {
if ( lightAttribute.EnableFarAttenuation !== undefined && lightAttribute.EnableFarAttenuation.value === 0 ) {
distance = 0;
} else {
distance = lightAttribute.FarAttenuationEnd.value;
}
}
// TODO: could this be calculated linearly from FarAttenuationStart to FarAttenuationEnd?
var decay = 1;
switch ( type ) {
case 0: // Point
model = new PointLight( color, intensity, distance, decay );
break;
case 1: // Directional
model = new DirectionalLight( color, intensity );
break;
case 2: // Spot
var angle = Math.PI / 3;
if ( lightAttribute.InnerAngle !== undefined ) {
angle = MathUtils.degToRad( lightAttribute.InnerAngle.value );
}
var penumbra = 0;
if ( lightAttribute.OuterAngle !== undefined ) {
// TODO: this is not correct - FBX calculates outer and inner angle in degrees
// with OuterAngle > InnerAngle && OuterAngle <= Math.PI
// while three.js uses a penumbra between (0, 1) to attenuate the inner angle
penumbra = MathUtils.degToRad( lightAttribute.OuterAngle.value );
penumbra = Math.max( penumbra, 1 );
}
model = new SpotLight( color, intensity, distance, angle, penumbra, decay );
break;
default:
console.warn( 'THREE.FBXLoader: Unknown light type ' + lightAttribute.LightType.value + ', defaulting to a PointLight.' );
model = new PointLight( color, intensity );
break;
}
if ( lightAttribute.CastShadows !== undefined && lightAttribute.CastShadows.value === 1 ) {
model.castShadow = true;
}
}
return model;
},
createMesh: function ( relationships, geometryMap, materialMap ) {
var model;
var geometry = null;
var material = null;
var materials = [];
// get geometry and materials(s) from connections
relationships.children.forEach( function ( child ) {
if ( geometryMap.has( child.ID ) ) {
geometry = geometryMap.get( child.ID );
}
if ( materialMap.has( child.ID ) ) {
materials.push( materialMap.get( child.ID ) );
}
} );
if ( materials.length > 1 ) {
material = materials;
} else if ( materials.length > 0 ) {
material = materials[ 0 ];
} else {
material = new MeshPhongMaterial( { color: 0xcccccc } );
materials.push( material );
}
if ( 'color' in geometry.attributes ) {
materials.forEach( function ( material ) {
material.vertexColors = true;
} );
}
if ( geometry.FBX_Deformer ) {
materials.forEach( function ( material ) {
material.skinning = true;
} );
model = new SkinnedMesh( geometry, material );
model.normalizeSkinWeights();
} else {
model = new Mesh( geometry, material );
}
return model;
},
createCurve: function ( relationships, geometryMap ) {
var geometry = relationships.children.reduce( function ( geo, child ) {
if ( geometryMap.has( child.ID ) ) geo = geometryMap.get( child.ID );
return geo;
}, null );
// FBX does not list materials for Nurbs lines, so we'll just put our own in here.
var material = new LineBasicMaterial( { color: 0x3300ff, linewidth: 1 } );
return new Line( geometry, material );
},
// parse the model node for transform data
getTransformData: function ( model, modelNode ) {
var transformData = {};
if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value );
if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value );
else transformData.eulerOrder = 'ZYX';
if ( 'Lcl_Translation' in modelNode ) transformData.translation = modelNode.Lcl_Translation.value;
if ( 'PreRotation' in modelNode ) transformData.preRotation = modelNode.PreRotation.value;
if ( 'Lcl_Rotation' in modelNode ) transformData.rotation = modelNode.Lcl_Rotation.value;
if ( 'PostRotation' in modelNode ) transformData.postRotation = modelNode.PostRotation.value;
if ( 'Lcl_Scaling' in modelNode ) transformData.scale = modelNode.Lcl_Scaling.value;
if ( 'ScalingOffset' in modelNode ) transformData.scalingOffset = modelNode.ScalingOffset.value;
if ( 'ScalingPivot' in modelNode ) transformData.scalingPivot = modelNode.ScalingPivot.value;
if ( 'RotationOffset' in modelNode ) transformData.rotationOffset = modelNode.RotationOffset.value;
if ( 'RotationPivot' in modelNode ) transformData.rotationPivot = modelNode.RotationPivot.value;
model.userData.transformData = transformData;
},
setLookAtProperties: function ( model, modelNode ) {
if ( 'LookAtProperty' in modelNode ) {
var children = connections.get( model.ID ).children;
children.forEach( function ( child ) {
if ( child.relationship === 'LookAtProperty' ) {
var lookAtTarget = fbxTree.Objects.Model[ child.ID ];
if ( 'Lcl_Translation' in lookAtTarget ) {
var pos = lookAtTarget.Lcl_Translation.value;
// DirectionalLight, SpotLight
if ( model.target !== undefined ) {
model.target.position.fromArray( pos );
sceneGraph.add( model.target );
} else { // Cameras and other Object3Ds
model.lookAt( new Vector3().fromArray( pos ) );
}
}
}
} );
}
},
bindSkeleton: function ( skeletons, geometryMap, modelMap ) {
var bindMatrices = this.parsePoseNodes();
for ( var ID in skeletons ) {
var skeleton = skeletons[ ID ];
var parents = connections.get( parseInt( skeleton.ID ) ).parents;
parents.forEach( function ( parent ) {
if ( geometryMap.has( parent.ID ) ) {
var geoID = parent.ID;
var geoRelationships = connections.get( geoID );
geoRelationships.parents.forEach( function ( geoConnParent ) {
if ( modelMap.has( geoConnParent.ID ) ) {
var model = modelMap.get( geoConnParent.ID );
model.bind( new Skeleton( skeleton.bones ), bindMatrices[ geoConnParent.ID ] );
}
} );
}
} );
}
},
parsePoseNodes: function () {
var bindMatrices = {};
if ( 'Pose' in fbxTree.Objects ) {
var BindPoseNode = fbxTree.Objects.Pose;
for ( var nodeID in BindPoseNode ) {
if ( BindPoseNode[ nodeID ].attrType === 'BindPose' ) {
var poseNodes = BindPoseNode[ nodeID ].PoseNode;
if ( Array.isArray( poseNodes ) ) {
poseNodes.forEach( function ( poseNode ) {
bindMatrices[ poseNode.Node ] = new Matrix4().fromArray( poseNode.Matrix.a );
} );
} else {
bindMatrices[ poseNodes.Node ] = new Matrix4().fromArray( poseNodes.Matrix.a );
}
}
}
}
return bindMatrices;
},
// Parse ambient color in FBXTree.GlobalSettings - if it's not set to black (default), create an ambient light
createAmbientLight: function () {
if ( 'GlobalSettings' in fbxTree && 'AmbientColor' in fbxTree.GlobalSettings ) {
var ambientColor = fbxTree.GlobalSettings.AmbientColor.value;
var r = ambientColor[ 0 ];
var g = ambientColor[ 1 ];
var b = ambientColor[ 2 ];
if ( r !== 0 || g !== 0 || b !== 0 ) {
var color = new Color( r, g, b );
sceneGraph.add( new AmbientLight( color, 1 ) );
}
}
},
setupMorphMaterials: function () {
var scope = this;
sceneGraph.traverse( function ( child ) {
if ( child.isMesh ) {
if ( child.geometry.morphAttributes.position && child.geometry.morphAttributes.position.length ) {
if ( Array.isArray( child.material ) ) {
child.material.forEach( function ( material, i ) {
scope.setupMorphMaterial( child, material, i );
} );
} else {
scope.setupMorphMaterial( child, child.material );
}
}
}
} );
},
setupMorphMaterial: function ( child, material, index ) {
var uuid = child.uuid;
var matUuid = material.uuid;
// if a geometry has morph targets, it cannot share the material with other geometries
var sharedMat = false;
sceneGraph.traverse( function ( node ) {
if ( node.isMesh ) {
if ( Array.isArray( node.material ) ) {
node.material.forEach( function ( mat ) {
if ( mat.uuid === matUuid && node.uuid !== uuid ) sharedMat = true;
} );
} else if ( node.material.uuid === matUuid && node.uuid !== uuid ) sharedMat = true;
}
} );
if ( sharedMat === true ) {
var clonedMat = material.clone();
clonedMat.morphTargets = true;
if ( index === undefined ) child.material = clonedMat;
else child.material[ index ] = clonedMat;
} else material.morphTargets = true;
}
};
// parse Geometry data from FBXTree and return map of BufferGeometries
function GeometryParser() {}
GeometryParser.prototype = {
constructor: GeometryParser,
// Parse nodes in FBXTree.Objects.Geometry
parse: function ( deformers ) {
var geometryMap = new Map();
if ( 'Geometry' in fbxTree.Objects ) {
var geoNodes = fbxTree.Objects.Geometry;
for ( var nodeID in geoNodes ) {
var relationships = connections.get( parseInt( nodeID ) );
var geo = this.parseGeometry( relationships, geoNodes[ nodeID ], deformers );
geometryMap.set( parseInt( nodeID ), geo );
}
}
return geometryMap;
},
// Parse single node in FBXTree.Objects.Geometry
parseGeometry: function ( relationships, geoNode, deformers ) {
switch ( geoNode.attrType ) {
case 'Mesh':
return this.parseMeshGeometry( relationships, geoNode, deformers );
break;
case 'NurbsCurve':
return this.parseNurbsGeometry( geoNode );
break;
}
},
// Parse single node mesh geometry in FBXTree.Objects.Geometry
parseMeshGeometry: function ( relationships, geoNode, deformers ) {
var skeletons = deformers.skeletons;
var morphTargets = [];
var modelNodes = relationships.parents.map( function ( parent ) {
return fbxTree.Objects.Model[ parent.ID ];
} );
// don't create geometry if it is not associated with any models
if ( modelNodes.length === 0 ) return;
var skeleton = relationships.children.reduce( function ( skeleton, child ) {
if ( skeletons[ child.ID ] !== undefined ) skeleton = skeletons[ child.ID ];
return skeleton;
}, null );
relationships.children.forEach( function ( child ) {
if ( deformers.morphTargets[ child.ID ] !== undefined ) {
morphTargets.push( deformers.morphTargets[ child.ID ] );
}
} );
// Assume one model and get the preRotation from that
// if there is more than one model associated with the geometry this may cause problems
var modelNode = modelNodes[ 0 ];
var transformData = {};
if ( 'RotationOrder' in modelNode ) transformData.eulerOrder = getEulerOrder( modelNode.RotationOrder.value );
if ( 'InheritType' in modelNode ) transformData.inheritType = parseInt( modelNode.InheritType.value );
if ( 'GeometricTranslation' in modelNode ) transformData.translation = modelNode.GeometricTranslation.value;
if ( 'GeometricRotation' in modelNode ) transformData.rotation = modelNode.GeometricRotation.value;
if ( 'GeometricScaling' in modelNode ) transformData.scale = modelNode.GeometricScaling.value;
var transform = generateTransform( transformData );
return this.genGeometry( geoNode, skeleton, morphTargets, transform );
},
// Generate a BufferGeometry from a node in FBXTree.Objects.Geometry
genGeometry: function ( geoNode, skeleton, morphTargets, preTransform ) {
var geo = new BufferGeometry();
if ( geoNode.attrName ) geo.name = geoNode.attrName;
var geoInfo = this.parseGeoNode( geoNode, skeleton );
var buffers = this.genBuffers( geoInfo );
var positionAttribute = new Float32BufferAttribute( buffers.vertex, 3 );
positionAttribute.applyMatrix4( preTransform );
geo.setAttribute( 'position', positionAttribute );
if ( buffers.colors.length > 0 ) {
geo.setAttribute( 'color', new Float32BufferAttribute( buffers.colors, 3 ) );
}
if ( skeleton ) {
geo.setAttribute( 'skinIndex', new Uint16BufferAttribute( buffers.weightsIndices, 4 ) );
geo.setAttribute( 'skinWeight', new Float32BufferAttribute( buffers.vertexWeights, 4 ) );
// used later to bind the skeleton to the model
geo.FBX_Deformer = skeleton;
}
if ( buffers.normal.length > 0 ) {
var normalMatrix = new Matrix3().getNormalMatrix( preTransform );
var normalAttribute = new Float32BufferAttribute( buffers.normal, 3 );
normalAttribute.applyNormalMatrix( normalMatrix );
geo.setAttribute( 'normal', normalAttribute );
}
buffers.uvs.forEach( function ( uvBuffer, i ) {
// subsequent uv buffers are called 'uv1', 'uv2', ...
var name = 'uv' + ( i + 1 ).toString();
// the first uv buffer is just called 'uv'
if ( i === 0 ) {
name = 'uv';
}
geo.setAttribute( name, new Float32BufferAttribute( buffers.uvs[ i ], 2 ) );
} );
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
// Convert the material indices of each vertex into rendering groups on the geometry.
var prevMaterialIndex = buffers.materialIndex[ 0 ];
var startIndex = 0;
buffers.materialIndex.forEach( function ( currentIndex, i ) {
if ( currentIndex !== prevMaterialIndex ) {
geo.addGroup( startIndex, i - startIndex, prevMaterialIndex );
prevMaterialIndex = currentIndex;
startIndex = i;
}
} );
// the loop above doesn't add the last group, do that here.
if ( geo.groups.length > 0 ) {
var lastGroup = geo.groups[ geo.groups.length - 1 ];
var lastIndex = lastGroup.start + lastGroup.count;
if ( lastIndex !== buffers.materialIndex.length ) {
geo.addGroup( lastIndex, buffers.materialIndex.length - lastIndex, prevMaterialIndex );
}
}
// case where there are multiple materials but the whole geometry is only
// using one of them
if ( geo.groups.length === 0 ) {
geo.addGroup( 0, buffers.materialIndex.length, buffers.materialIndex[ 0 ] );
}
}
this.addMorphTargets( geo, geoNode, morphTargets, preTransform );
return geo;
},
parseGeoNode: function ( geoNode, skeleton ) {
var geoInfo = {};
geoInfo.vertexPositions = ( geoNode.Vertices !== undefined ) ? geoNode.Vertices.a : [];
geoInfo.vertexIndices = ( geoNode.PolygonVertexIndex !== undefined ) ? geoNode.PolygonVertexIndex.a : [];
if ( geoNode.LayerElementColor ) {
geoInfo.color = this.parseVertexColors( geoNode.LayerElementColor[ 0 ] );
}
if ( geoNode.LayerElementMaterial ) {
geoInfo.material = this.parseMaterialIndices( geoNode.LayerElementMaterial[ 0 ] );
}
if ( geoNode.LayerElementNormal ) {
geoInfo.normal = this.parseNormals( geoNode.LayerElementNormal[ 0 ] );
}
if ( geoNode.LayerElementUV ) {
geoInfo.uv = [];
var i = 0;
while ( geoNode.LayerElementUV[ i ] ) {
geoInfo.uv.push( this.parseUVs( geoNode.LayerElementUV[ i ] ) );
i ++;
}
}
geoInfo.weightTable = {};
if ( skeleton !== null ) {
geoInfo.skeleton = skeleton;
skeleton.rawBones.forEach( function ( rawBone, i ) {
// loop over the bone's vertex indices and weights
rawBone.indices.forEach( function ( index, j ) {
if ( geoInfo.weightTable[ index ] === undefined ) geoInfo.weightTable[ index ] = [];
geoInfo.weightTable[ index ].push( {
id: i,
weight: rawBone.weights[ j ],
} );
} );
} );
}
return geoInfo;
},
genBuffers: function ( geoInfo ) {
var buffers = {
vertex: [],
normal: [],
colors: [],
uvs: [],
materialIndex: [],
vertexWeights: [],
weightsIndices: [],
};
var polygonIndex = 0;
var faceLength = 0;
var displayedWeightsWarning = false;
// these will hold data for a single face
var facePositionIndexes = [];
var faceNormals = [];
var faceColors = [];
var faceUVs = [];
var faceWeights = [];
var faceWeightIndices = [];
var scope = this;
geoInfo.vertexIndices.forEach( function ( vertexIndex, polygonVertexIndex ) {
var endOfFace = false;
// Face index and vertex index arrays are combined in a single array
// A cube with quad faces looks like this:
// PolygonVertexIndex: *24 {
// a: 0, 1, 3, -3, 2, 3, 5, -5, 4, 5, 7, -7, 6, 7, 1, -1, 1, 7, 5, -4, 6, 0, 2, -5
// }
// Negative numbers mark the end of a face - first face here is 0, 1, 3, -3
// to find index of last vertex bit shift the index: ^ - 1
if ( vertexIndex < 0 ) {
vertexIndex = vertexIndex ^ - 1; // equivalent to ( x * -1 ) - 1
endOfFace = true;
}
var weightIndices = [];
var weights = [];
facePositionIndexes.push( vertexIndex * 3, vertexIndex * 3 + 1, vertexIndex * 3 + 2 );
if ( geoInfo.color ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.color );
faceColors.push( data[ 0 ], data[ 1 ], data[ 2 ] );
}
if ( geoInfo.skeleton ) {
if ( geoInfo.weightTable[ vertexIndex ] !== undefined ) {
geoInfo.weightTable[ vertexIndex ].forEach( function ( wt ) {
weights.push( wt.weight );
weightIndices.push( wt.id );
} );
}
if ( weights.length > 4 ) {
if ( ! displayedWeightsWarning ) {
console.warn( 'THREE.FBXLoader: Vertex has more than 4 skinning weights assigned to vertex. Deleting additional weights.' );
displayedWeightsWarning = true;
}
var wIndex = [ 0, 0, 0, 0 ];
var Weight = [ 0, 0, 0, 0 ];
weights.forEach( function ( weight, weightIndex ) {
var currentWeight = weight;
var currentIndex = weightIndices[ weightIndex ];
Weight.forEach( function ( comparedWeight, comparedWeightIndex, comparedWeightArray ) {
if ( currentWeight > comparedWeight ) {
comparedWeightArray[ comparedWeightIndex ] = currentWeight;
currentWeight = comparedWeight;
var tmp = wIndex[ comparedWeightIndex ];
wIndex[ comparedWeightIndex ] = currentIndex;
currentIndex = tmp;
}
} );
} );
weightIndices = wIndex;
weights = Weight;
}
// if the weight array is shorter than 4 pad with 0s
while ( weights.length < 4 ) {
weights.push( 0 );
weightIndices.push( 0 );
}
for ( var i = 0; i < 4; ++ i ) {
faceWeights.push( weights[ i ] );
faceWeightIndices.push( weightIndices[ i ] );
}
}
if ( geoInfo.normal ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.normal );
faceNormals.push( data[ 0 ], data[ 1 ], data[ 2 ] );
}
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
var materialIndex = getData( polygonVertexIndex, polygonIndex, vertexIndex, geoInfo.material )[ 0 ];
}
if ( geoInfo.uv ) {
geoInfo.uv.forEach( function ( uv, i ) {
var data = getData( polygonVertexIndex, polygonIndex, vertexIndex, uv );
if ( faceUVs[ i ] === undefined ) {
faceUVs[ i ] = [];
}
faceUVs[ i ].push( data[ 0 ] );
faceUVs[ i ].push( data[ 1 ] );
} );
}
faceLength ++;
if ( endOfFace ) {
scope.genFace( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength );
polygonIndex ++;
faceLength = 0;
// reset arrays for the next face
facePositionIndexes = [];
faceNormals = [];
faceColors = [];
faceUVs = [];
faceWeights = [];
faceWeightIndices = [];
}
} );
return buffers;
},
// Generate data for a single face in a geometry. If the face is a quad then split it into 2 tris
genFace: function ( buffers, geoInfo, facePositionIndexes, materialIndex, faceNormals, faceColors, faceUVs, faceWeights, faceWeightIndices, faceLength ) {
for ( var i = 2; i < faceLength; i ++ ) {
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 0 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ 2 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 + 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ ( i - 1 ) * 3 + 2 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 + 1 ] ] );
buffers.vertex.push( geoInfo.vertexPositions[ facePositionIndexes[ i * 3 + 2 ] ] );
if ( geoInfo.skeleton ) {
buffers.vertexWeights.push( faceWeights[ 0 ] );
buffers.vertexWeights.push( faceWeights[ 1 ] );
buffers.vertexWeights.push( faceWeights[ 2 ] );
buffers.vertexWeights.push( faceWeights[ 3 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 1 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 2 ] );
buffers.vertexWeights.push( faceWeights[ ( i - 1 ) * 4 + 3 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 + 1 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 + 2 ] );
buffers.vertexWeights.push( faceWeights[ i * 4 + 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ 0 ] );
buffers.weightsIndices.push( faceWeightIndices[ 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ ( i - 1 ) * 4 + 3 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 1 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 2 ] );
buffers.weightsIndices.push( faceWeightIndices[ i * 4 + 3 ] );
}
if ( geoInfo.color ) {
buffers.colors.push( faceColors[ 0 ] );
buffers.colors.push( faceColors[ 1 ] );
buffers.colors.push( faceColors[ 2 ] );
buffers.colors.push( faceColors[ ( i - 1 ) * 3 ] );
buffers.colors.push( faceColors[ ( i - 1 ) * 3 + 1 ] );
buffers.colors.push( faceColors[ ( i - 1 ) * 3 + 2 ] );
buffers.colors.push( faceColors[ i * 3 ] );
buffers.colors.push( faceColors[ i * 3 + 1 ] );
buffers.colors.push( faceColors[ i * 3 + 2 ] );
}
if ( geoInfo.material && geoInfo.material.mappingType !== 'AllSame' ) {
buffers.materialIndex.push( materialIndex );
buffers.materialIndex.push( materialIndex );
buffers.materialIndex.push( materialIndex );
}
if ( geoInfo.normal ) {
buffers.normal.push( faceNormals[ 0 ] );
buffers.normal.push( faceNormals[ 1 ] );
buffers.normal.push( faceNormals[ 2 ] );
buffers.normal.push( faceNormals[ ( i - 1 ) * 3 ] );
buffers.normal.push( faceNormals[ ( i - 1 ) * 3 + 1 ] );
buffers.normal.push( faceNormals[ ( i - 1 ) * 3 + 2 ] );
buffers.normal.push( faceNormals[ i * 3 ] );
buffers.normal.push( faceNormals[ i * 3 + 1 ] );
buffers.normal.push( faceNormals[ i * 3 + 2 ] );
}
if ( geoInfo.uv ) {
geoInfo.uv.forEach( function ( uv, j ) {
if ( buffers.uvs[ j ] === undefined ) buffers.uvs[ j ] = [];
buffers.uvs[ j ].push( faceUVs[ j ][ 0 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ 1 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ ( i - 1 ) * 2 + 1 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ i * 2 ] );
buffers.uvs[ j ].push( faceUVs[ j ][ i * 2 + 1 ] );
} );
}
}
},
addMorphTargets: function ( parentGeo, parentGeoNode, morphTargets, preTransform ) {
if ( morphTargets.length === 0 ) return;
parentGeo.morphTargetsRelative = true;
parentGeo.morphAttributes.position = [];
// parentGeo.morphAttributes.normal = []; // not implemented
var scope = this;
morphTargets.forEach( function ( morphTarget ) {
morphTarget.rawTargets.forEach( function ( rawTarget ) {
var morphGeoNode = fbxTree.Objects.Geometry[ rawTarget.geoID ];
if ( morphGeoNode !== undefined ) {
scope.genMorphGeometry( parentGeo, parentGeoNode, morphGeoNode, preTransform, rawTarget.name );
}
} );
} );
},
// a morph geometry node is similar to a standard node, and the node is also contained
// in FBXTree.Objects.Geometry, however it can only have attributes for position, normal
// and a special attribute Index defining which vertices of the original geometry are affected
// Normal and position attributes only have data for the vertices that are affected by the morph
genMorphGeometry: function ( parentGeo, parentGeoNode, morphGeoNode, preTransform, name ) {
var vertexIndices = ( parentGeoNode.PolygonVertexIndex !== undefined ) ? parentGeoNode.PolygonVertexIndex.a : [];
var morphPositionsSparse = ( morphGeoNode.Vertices !== undefined ) ? morphGeoNode.Vertices.a : [];
var indices = ( morphGeoNode.Indexes !== undefined ) ? morphGeoNode.Indexes.a : [];
var length = parentGeo.attributes.position.count * 3;
var morphPositions = new Float32Array( length );
for ( var i = 0; i < indices.length; i ++ ) {
var morphIndex = indices[ i ] * 3;
morphPositions[ morphIndex ] = morphPositionsSparse[ i * 3 ];
morphPositions[ morphIndex + 1 ] = morphPositionsSparse[ i * 3 + 1 ];
morphPositions[ morphIndex + 2 ] = morphPositionsSparse[ i * 3 + 2 ];
}
// TODO: add morph normal support
var morphGeoInfo = {
vertexIndices: vertexIndices,
vertexPositions: morphPositions,
};
var morphBuffers = this.genBuffers( morphGeoInfo );
var positionAttribute = new Float32BufferAttribute( morphBuffers.vertex, 3 );
positionAttribute.name = name || morphGeoNode.attrName;
positionAttribute.applyMatrix4( preTransform );
parentGeo.morphAttributes.position.push( positionAttribute );
},
// Parse normal from FBXTree.Objects.Geometry.LayerElementNormal if it exists
parseNormals: function ( NormalNode ) {
var mappingType = NormalNode.MappingInformationType;
var referenceType = NormalNode.ReferenceInformationType;
var buffer = NormalNode.Normals.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
if ( 'NormalIndex' in NormalNode ) {
indexBuffer = NormalNode.NormalIndex.a;
} else if ( 'NormalsIndex' in NormalNode ) {
indexBuffer = NormalNode.NormalsIndex.a;
}
}
return {
dataSize: 3,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
},
// Parse UVs from FBXTree.Objects.Geometry.LayerElementUV if it exists
parseUVs: function ( UVNode ) {
var mappingType = UVNode.MappingInformationType;
var referenceType = UVNode.ReferenceInformationType;
var buffer = UVNode.UV.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
indexBuffer = UVNode.UVIndex.a;
}
return {
dataSize: 2,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
},
// Parse Vertex Colors from FBXTree.Objects.Geometry.LayerElementColor if it exists
parseVertexColors: function ( ColorNode ) {
var mappingType = ColorNode.MappingInformationType;
var referenceType = ColorNode.ReferenceInformationType;
var buffer = ColorNode.Colors.a;
var indexBuffer = [];
if ( referenceType === 'IndexToDirect' ) {
indexBuffer = ColorNode.ColorIndex.a;
}
return {
dataSize: 4,
buffer: buffer,
indices: indexBuffer,
mappingType: mappingType,
referenceType: referenceType
};
},
// Parse mapping and material data in FBXTree.Objects.Geometry.LayerElementMaterial if it exists
parseMaterialIndices: function ( MaterialNode ) {
var mappingType = MaterialNode.MappingInformationType;
var referenceType = MaterialNode.ReferenceInformationType;
if ( mappingType === 'NoMappingInformation' ) {
return {
dataSize: 1,
buffer: [ 0 ],
indices: [ 0 ],
mappingType: 'AllSame',
referenceType: referenceType
};
}
var materialIndexBuffer = MaterialNode.Materials.a;
// Since materials are stored as indices, there's a bit of a mismatch between FBX and what
// we expect.So we create an intermediate buffer that points to the index in the buffer,
// for conforming with the other functions we've written for other data.
var materialIndices = [];
for ( var i = 0; i < materialIndexBuffer.length; ++ i ) {
materialIndices.push( i );
}
return {
dataSize: 1,
buffer: materialIndexBuffer,
indices: materialIndices,
mappingType: mappingType,
referenceType: referenceType
};
},
// Generate a NurbGeometry from a node in FBXTree.Objects.Geometry
parseNurbsGeometry: function ( geoNode ) {
if ( NURBSCurve === undefined ) {
console.error( 'THREE.FBXLoader: The loader relies on NURBSCurve for any nurbs present in the model. Nurbs will show up as empty geometry.' );
return new BufferGeometry();
}
var order = parseInt( geoNode.Order );
if ( isNaN( order ) ) {
console.error( 'THREE.FBXLoader: Invalid Order %s given for geometry ID: %s', geoNode.Order, geoNode.id );
return new BufferGeometry();
}
var degree = order - 1;
var knots = geoNode.KnotVector.a;
var controlPoints = [];
var pointsValues = geoNode.Points.a;
for ( var i = 0, l = pointsValues.length; i < l; i += 4 ) {
controlPoints.push( new Vector4().fromArray( pointsValues, i ) );
}
var startKnot, endKnot;
if ( geoNode.Form === 'Closed' ) {
controlPoints.push( controlPoints[ 0 ] );
} else if ( geoNode.Form === 'Periodic' ) {
startKnot = degree;
endKnot = knots.length - 1 - startKnot;
for ( var i = 0; i < degree; ++ i ) {
controlPoints.push( controlPoints[ i ] );
}
}
var curve = new NURBSCurve( degree, knots, controlPoints, startKnot, endKnot );
var vertices = curve.getPoints( controlPoints.length * 7 );
var positions = new Float32Array( vertices.length * 3 );
vertices.forEach( function ( vertex, i ) {
vertex.toArray( positions, i * 3 );
} );
var geometry = new BufferGeometry();
geometry.setAttribute( 'position', new BufferAttribute( positions, 3 ) );
return geometry;
},
};
// parse animation data from FBXTree
function AnimationParser() {}
AnimationParser.prototype = {
constructor: AnimationParser,
// take raw animation clips and turn them into three.js animation clips
parse: function () {
var animationClips = [];
var rawClips = this.parseClips();
if ( rawClips !== undefined ) {
for ( var key in rawClips ) {
var rawClip = rawClips[ key ];
var clip = this.addClip( rawClip );
animationClips.push( clip );
}
}
return animationClips;
},
parseClips: function () {
// since the actual transformation data is stored in FBXTree.Objects.AnimationCurve,
// if this is undefined we can safely assume there are no animations
if ( fbxTree.Objects.AnimationCurve === undefined ) return undefined;
var curveNodesMap = this.parseAnimationCurveNodes();
this.parseAnimationCurves( curveNodesMap );
var layersMap = this.parseAnimationLayers( curveNodesMap );
var rawClips = this.parseAnimStacks( layersMap );
return rawClips;
},
// parse nodes in FBXTree.Objects.AnimationCurveNode
// each AnimationCurveNode holds data for an animation transform for a model (e.g. left arm rotation )
// and is referenced by an AnimationLayer
parseAnimationCurveNodes: function () {
var rawCurveNodes = fbxTree.Objects.AnimationCurveNode;
var curveNodesMap = new Map();
for ( var nodeID in rawCurveNodes ) {
var rawCurveNode = rawCurveNodes[ nodeID ];
if ( rawCurveNode.attrName.match( /S|R|T|DeformPercent/ ) !== null ) {
var curveNode = {
id: rawCurveNode.id,
attr: rawCurveNode.attrName,
curves: {},
};
curveNodesMap.set( curveNode.id, curveNode );
}
}
return curveNodesMap;
},
// parse nodes in FBXTree.Objects.AnimationCurve and connect them up to
// previously parsed AnimationCurveNodes. Each AnimationCurve holds data for a single animated
// axis ( e.g. times and values of x rotation)
parseAnimationCurves: function ( curveNodesMap ) {
var rawCurves = fbxTree.Objects.AnimationCurve;
// TODO: Many values are identical up to roundoff error, but won't be optimised
// e.g. position times: [0, 0.4, 0. 8]
// position values: [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.23538335023477e-7, 93.67518615722656, -0.9982695579528809, 7.235384487103147e-7, 93.67520904541016, -0.9982695579528809]
// clearly, this should be optimised to
// times: [0], positions [7.23538335023477e-7, 93.67518615722656, -0.9982695579528809]
// this shows up in nearly every FBX file, and generally time array is length > 100
for ( var nodeID in rawCurves ) {
var animationCurve = {
id: rawCurves[ nodeID ].id,
times: rawCurves[ nodeID ].KeyTime.a.map( convertFBXTimeToSeconds ),
values: rawCurves[ nodeID ].KeyValueFloat.a,
};
var relationships = connections.get( animationCurve.id );
if ( relationships !== undefined ) {
var animationCurveID = relationships.parents[ 0 ].ID;
var animationCurveRelationship = relationships.parents[ 0 ].relationship;
if ( animationCurveRelationship.match( /X/ ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'x' ] = animationCurve;
} else if ( animationCurveRelationship.match( /Y/ ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'y' ] = animationCurve;
} else if ( animationCurveRelationship.match( /Z/ ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'z' ] = animationCurve;
} else if ( animationCurveRelationship.match( /d|DeformPercent/ ) && curveNodesMap.has( animationCurveID ) ) {
curveNodesMap.get( animationCurveID ).curves[ 'morph' ] = animationCurve;
}
}
}
},
// parse nodes in FBXTree.Objects.AnimationLayer. Each layers holds references
// to various AnimationCurveNodes and is referenced by an AnimationStack node
// note: theoretically a stack can have multiple layers, however in practice there always seems to be one per stack
parseAnimationLayers: function ( curveNodesMap ) {
var rawLayers = fbxTree.Objects.AnimationLayer;
var layersMap = new Map();
for ( var nodeID in rawLayers ) {
var layerCurveNodes = [];
var connection = connections.get( parseInt( nodeID ) );
if ( connection !== undefined ) {
// all the animationCurveNodes used in the layer
var children = connection.children;
children.forEach( function ( child, i ) {
if ( curveNodesMap.has( child.ID ) ) {
var curveNode = curveNodesMap.get( child.ID );
// check that the curves are defined for at least one axis, otherwise ignore the curveNode
if ( curveNode.curves.x !== undefined || curveNode.curves.y !== undefined || curveNode.curves.z !== undefined ) {
if ( layerCurveNodes[ i ] === undefined ) {
var modelID = connections.get( child.ID ).parents.filter( function ( parent ) {
return parent.relationship !== undefined;
} )[ 0 ].ID;
if ( modelID !== undefined ) {
var rawModel = fbxTree.Objects.Model[ modelID.toString() ];
var node = {
modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '',
ID: rawModel.id,
initialPosition: [ 0, 0, 0 ],
initialRotation: [ 0, 0, 0 ],
initialScale: [ 1, 1, 1 ],
};
sceneGraph.traverse( function ( child ) {
if ( child.ID === rawModel.id ) {
node.transform = child.matrix;
if ( child.userData.transformData ) node.eulerOrder = child.userData.transformData.eulerOrder;
}
} );
if ( ! node.transform ) node.transform = new Matrix4();
// if the animated model is pre rotated, we'll have to apply the pre rotations to every
// animation value as well
if ( 'PreRotation' in rawModel ) node.preRotation = rawModel.PreRotation.value;
if ( 'PostRotation' in rawModel ) node.postRotation = rawModel.PostRotation.value;
layerCurveNodes[ i ] = node;
}
}
if ( layerCurveNodes[ i ] ) layerCurveNodes[ i ][ curveNode.attr ] = curveNode;
} else if ( curveNode.curves.morph !== undefined ) {
if ( layerCurveNodes[ i ] === undefined ) {
var deformerID = connections.get( child.ID ).parents.filter( function ( parent ) {
return parent.relationship !== undefined;
} )[ 0 ].ID;
var morpherID = connections.get( deformerID ).parents[ 0 ].ID;
var geoID = connections.get( morpherID ).parents[ 0 ].ID;
// assuming geometry is not used in more than one model
var modelID = connections.get( geoID ).parents[ 0 ].ID;
var rawModel = fbxTree.Objects.Model[ modelID ];
var node = {
modelName: rawModel.attrName ? PropertyBinding.sanitizeNodeName( rawModel.attrName ) : '',
morphName: fbxTree.Objects.Deformer[ deformerID ].attrName,
};
layerCurveNodes[ i ] = node;
}
layerCurveNodes[ i ][ curveNode.attr ] = curveNode;
}
}
} );
layersMap.set( parseInt( nodeID ), layerCurveNodes );
}
}
return layersMap;
},
// parse nodes in FBXTree.Objects.AnimationStack. These are the top level node in the animation
// hierarchy. Each Stack node will be used to create a AnimationClip
parseAnimStacks: function ( layersMap ) {
var rawStacks = fbxTree.Objects.AnimationStack;
// connect the stacks (clips) up to the layers
var rawClips = {};
for ( var nodeID in rawStacks ) {
var children = connections.get( parseInt( nodeID ) ).children;
if ( children.length > 1 ) {
// it seems like stacks will always be associated with a single layer. But just in case there are files
// where there are multiple layers per stack, we'll display a warning
console.warn( 'THREE.FBXLoader: Encountered an animation stack with multiple layers, this is currently not supported. Ignoring subsequent layers.' );
}
var layer = layersMap.get( children[ 0 ].ID );
rawClips[ nodeID ] = {
name: rawStacks[ nodeID ].attrName,
layer: layer,
};
}
return rawClips;
},
addClip: function ( rawClip ) {
var tracks = [];
var scope = this;
rawClip.layer.forEach( function ( rawTracks ) {
tracks = tracks.concat( scope.generateTracks( rawTracks ) );
} );
return new AnimationClip( rawClip.name, - 1, tracks );
},
generateTracks: function ( rawTracks ) {
var tracks = [];
var initialPosition = new Vector3();
var initialRotation = new Quaternion();
var initialScale = new Vector3();
if ( rawTracks.transform ) rawTracks.transform.decompose( initialPosition, initialRotation, initialScale );
initialPosition = initialPosition.toArray();
initialRotation = new Euler().setFromQuaternion( initialRotation, rawTracks.eulerOrder ).toArray();
initialScale = initialScale.toArray();
if ( rawTracks.T !== undefined && Object.keys( rawTracks.T.curves ).length > 0 ) {
var positionTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.T.curves, initialPosition, 'position' );
if ( positionTrack !== undefined ) tracks.push( positionTrack );
}
if ( rawTracks.R !== undefined && Object.keys( rawTracks.R.curves ).length > 0 ) {
var rotationTrack = this.generateRotationTrack( rawTracks.modelName, rawTracks.R.curves, initialRotation, rawTracks.preRotation, rawTracks.postRotation, rawTracks.eulerOrder );
if ( rotationTrack !== undefined ) tracks.push( rotationTrack );
}
if ( rawTracks.S !== undefined && Object.keys( rawTracks.S.curves ).length > 0 ) {
var scaleTrack = this.generateVectorTrack( rawTracks.modelName, rawTracks.S.curves, initialScale, 'scale' );
if ( scaleTrack !== undefined ) tracks.push( scaleTrack );
}
if ( rawTracks.DeformPercent !== undefined ) {
var morphTrack = this.generateMorphTrack( rawTracks );
if ( morphTrack !== undefined ) tracks.push( morphTrack );
}
return tracks;
},
generateVectorTrack: function ( modelName, curves, initialValue, type ) {
var times = this.getTimesForAllAxes( curves );
var values = this.getKeyframeTrackValues( times, curves, initialValue );
return new VectorKeyframeTrack( modelName + '.' + type, times, values );
},
generateRotationTrack: function ( modelName, curves, initialValue, preRotation, postRotation, eulerOrder ) {
if ( curves.x !== undefined ) {
this.interpolateRotations( curves.x );
curves.x.values = curves.x.values.map( MathUtils.degToRad );
}
if ( curves.y !== undefined ) {
this.interpolateRotations( curves.y );
curves.y.values = curves.y.values.map( MathUtils.degToRad );
}
if ( curves.z !== undefined ) {
this.interpolateRotations( curves.z );
curves.z.values = curves.z.values.map( MathUtils.degToRad );
}
var times = this.getTimesForAllAxes( curves );
var values = this.getKeyframeTrackValues( times, curves, initialValue );
if ( preRotation !== undefined ) {
preRotation = preRotation.map( MathUtils.degToRad );
preRotation.push( eulerOrder );
preRotation = new Euler().fromArray( preRotation );
preRotation = new Quaternion().setFromEuler( preRotation );
}
if ( postRotation !== undefined ) {
postRotation = postRotation.map( MathUtils.degToRad );
postRotation.push( eulerOrder );
postRotation = new Euler().fromArray( postRotation );
postRotation = new Quaternion().setFromEuler( postRotation ).inverse();
}
var quaternion = new Quaternion();
var euler = new Euler();
var quaternionValues = [];
for ( var i = 0; i < values.length; i += 3 ) {
euler.set( values[ i ], values[ i + 1 ], values[ i + 2 ], eulerOrder );
quaternion.setFromEuler( euler );
if ( preRotation !== undefined ) quaternion.premultiply( preRotation );
if ( postRotation !== undefined ) quaternion.multiply( postRotation );
quaternion.toArray( quaternionValues, ( i / 3 ) * 4 );
}
return new QuaternionKeyframeTrack( modelName + '.quaternion', times, quaternionValues );
},
generateMorphTrack: function ( rawTracks ) {
var curves = rawTracks.DeformPercent.curves.morph;
var values = curves.values.map( function ( val ) {
return val / 100;
} );
var morphNum = sceneGraph.getObjectByName( rawTracks.modelName ).morphTargetDictionary[ rawTracks.morphName ];
return new NumberKeyframeTrack( rawTracks.modelName + '.morphTargetInfluences[' + morphNum + ']', curves.times, values );
},
// For all animated objects, times are defined separately for each axis
// Here we'll combine the times into one sorted array without duplicates
getTimesForAllAxes: function ( curves ) {
var times = [];
// first join together the times for each axis, if defined
if ( curves.x !== undefined ) times = times.concat( curves.x.times );
if ( curves.y !== undefined ) times = times.concat( curves.y.times );
if ( curves.z !== undefined ) times = times.concat( curves.z.times );
// then sort them and remove duplicates
times = times.sort( function ( a, b ) {
return a - b;
} ).filter( function ( elem, index, array ) {
return array.indexOf( elem ) == index;
} );
return times;
},
getKeyframeTrackValues: function ( times, curves, initialValue ) {
var prevValue = initialValue;
var values = [];
var xIndex = - 1;
var yIndex = - 1;
var zIndex = - 1;
times.forEach( function ( time ) {
if ( curves.x ) xIndex = curves.x.times.indexOf( time );
if ( curves.y ) yIndex = curves.y.times.indexOf( time );
if ( curves.z ) zIndex = curves.z.times.indexOf( time );
// if there is an x value defined for this frame, use that
if ( xIndex !== - 1 ) {
var xValue = curves.x.values[ xIndex ];
values.push( xValue );
prevValue[ 0 ] = xValue;
} else {
// otherwise use the x value from the previous frame
values.push( prevValue[ 0 ] );
}
if ( yIndex !== - 1 ) {
var yValue = curves.y.values[ yIndex ];
values.push( yValue );
prevValue[ 1 ] = yValue;
} else {
values.push( prevValue[ 1 ] );
}
if ( zIndex !== - 1 ) {
var zValue = curves.z.values[ zIndex ];
values.push( zValue );
prevValue[ 2 ] = zValue;
} else {
values.push( prevValue[ 2 ] );
}
} );
return values;
},
// Rotations are defined as Euler angles which can have values of any size
// These will be converted to quaternions which don't support values greater than
// PI, so we'll interpolate large rotations
interpolateRotations: function ( curve ) {
for ( var i = 1; i < curve.values.length; i ++ ) {
var initialValue = curve.values[ i - 1 ];
var valuesSpan = curve.values[ i ] - initialValue;
var absoluteSpan = Math.abs( valuesSpan );
if ( absoluteSpan >= 180 ) {
var numSubIntervals = absoluteSpan / 180;
var step = valuesSpan / numSubIntervals;
var nextValue = initialValue + step;
var initialTime = curve.times[ i - 1 ];
var timeSpan = curve.times[ i ] - initialTime;
var interval = timeSpan / numSubIntervals;
var nextTime = initialTime + interval;
var interpolatedTimes = [];
var interpolatedValues = [];
while ( nextTime < curve.times[ i ] ) {
interpolatedTimes.push( nextTime );
nextTime += interval;
interpolatedValues.push( nextValue );
nextValue += step;
}
curve.times = inject( curve.times, i, interpolatedTimes );
curve.values = inject( curve.values, i, interpolatedValues );
}
}
},
};
// parse an FBX file in ASCII format
function TextParser() {}
TextParser.prototype = {
constructor: TextParser,
getPrevNode: function () {
return this.nodeStack[ this.currentIndent - 2 ];
},
getCurrentNode: function () {
return this.nodeStack[ this.currentIndent - 1 ];
},
getCurrentProp: function () {
return this.currentProp;
},
pushStack: function ( node ) {
this.nodeStack.push( node );
this.currentIndent += 1;
},
popStack: function () {
this.nodeStack.pop();
this.currentIndent -= 1;
},
setCurrentProp: function ( val, name ) {
this.currentProp = val;
this.currentPropName = name;
},
parse: function ( text ) {
this.currentIndent = 0;
this.allNodes = new FBXTree();
this.nodeStack = [];
this.currentProp = [];
this.currentPropName = '';
var scope = this;
var split = text.split( /[\r\n]+/ );
split.forEach( function ( line, i ) {
var matchComment = line.match( /^[\s\t]*;/ );
var matchEmpty = line.match( /^[\s\t]*$/ );
if ( matchComment || matchEmpty ) return;
var matchBeginning = line.match( '^\\t{' + scope.currentIndent + '}(\\w+):(.*){', '' );
var matchProperty = line.match( '^\\t{' + ( scope.currentIndent ) + '}(\\w+):[\\s\\t\\r\\n](.*)' );
var matchEnd = line.match( '^\\t{' + ( scope.currentIndent - 1 ) + '}}' );
if ( matchBeginning ) {
scope.parseNodeBegin( line, matchBeginning );
} else if ( matchProperty ) {
scope.parseNodeProperty( line, matchProperty, split[ ++ i ] );
} else if ( matchEnd ) {
scope.popStack();
} else if ( line.match( /^[^\s\t}]/ ) ) {
// large arrays are split over multiple lines terminated with a ',' character
// if this is encountered the line needs to be joined to the previous line
scope.parseNodePropertyContinued( line );
}
} );
return this.allNodes;
},
parseNodeBegin: function ( line, property ) {
var nodeName = property[ 1 ].trim().replace( /^"/, '' ).replace( /"$/, '' );
var nodeAttrs = property[ 2 ].split( ',' ).map( function ( attr ) {
return attr.trim().replace( /^"/, '' ).replace( /"$/, '' );
} );
var node = { name: nodeName };
var attrs = this.parseNodeAttr( nodeAttrs );
var currentNode = this.getCurrentNode();
// a top node
if ( this.currentIndent === 0 ) {
this.allNodes.add( nodeName, node );
} else { // a subnode
// if the subnode already exists, append it
if ( nodeName in currentNode ) {
// special case Pose needs PoseNodes as an array
if ( nodeName === 'PoseNode' ) {
currentNode.PoseNode.push( node );
} else if ( currentNode[ nodeName ].id !== undefined ) {
currentNode[ nodeName ] = {};
currentNode[ nodeName ][ currentNode[ nodeName ].id ] = currentNode[ nodeName ];
}
if ( attrs.id !== '' ) currentNode[ nodeName ][ attrs.id ] = node;
} else if ( typeof attrs.id === 'number' ) {
currentNode[ nodeName ] = {};
currentNode[ nodeName ][ attrs.id ] = node;
} else if ( nodeName !== 'Properties70' ) {
if ( nodeName === 'PoseNode' ) currentNode[ nodeName ] = [ node ];
else currentNode[ nodeName ] = node;
}
}
if ( typeof attrs.id === 'number' ) node.id = attrs.id;
if ( attrs.name !== '' ) node.attrName = attrs.name;
if ( attrs.type !== '' ) node.attrType = attrs.type;
this.pushStack( node );
},
parseNodeAttr: function ( attrs ) {
var id = attrs[ 0 ];
if ( attrs[ 0 ] !== '' ) {
id = parseInt( attrs[ 0 ] );
if ( isNaN( id ) ) {
id = attrs[ 0 ];
}
}
var name = '', type = '';
if ( attrs.length > 1 ) {
name = attrs[ 1 ].replace( /^(\w+)::/, '' );
type = attrs[ 2 ];
}
return { id: id, name: name, type: type };
},
parseNodeProperty: function ( line, property, contentLine ) {
var propName = property[ 1 ].replace( /^"/, '' ).replace( /"$/, '' ).trim();
var propValue = property[ 2 ].replace( /^"/, '' ).replace( /"$/, '' ).trim();
// for special case: base64 image data follows "Content: ," line
// Content: ,
// "/9j/4RDaRXhpZgAATU0A..."
if ( propName === 'Content' && propValue === ',' ) {
propValue = contentLine.replace( /"/g, '' ).replace( /,$/, '' ).trim();
}
var currentNode = this.getCurrentNode();
var parentName = currentNode.name;
if ( parentName === 'Properties70' ) {
this.parseNodeSpecialProperty( line, propName, propValue );
return;
}
// Connections
if ( propName === 'C' ) {
var connProps = propValue.split( ',' ).slice( 1 );
var from = parseInt( connProps[ 0 ] );
var to = parseInt( connProps[ 1 ] );
var rest = propValue.split( ',' ).slice( 3 );
rest = rest.map( function ( elem ) {
return elem.trim().replace( /^"/, '' );
} );
propName = 'connections';
propValue = [ from, to ];
append( propValue, rest );
if ( currentNode[ propName ] === undefined ) {
currentNode[ propName ] = [];
}
}
// Node
if ( propName === 'Node' ) currentNode.id = propValue;
// connections
if ( propName in currentNode && Array.isArray( currentNode[ propName ] ) ) {
currentNode[ propName ].push( propValue );
} else {
if ( propName !== 'a' ) currentNode[ propName ] = propValue;
else currentNode.a = propValue;
}
this.setCurrentProp( currentNode, propName );
// convert string to array, unless it ends in ',' in which case more will be added to it
if ( propName === 'a' && propValue.slice( - 1 ) !== ',' ) {
currentNode.a = parseNumberArray( propValue );
}
},
parseNodePropertyContinued: function ( line ) {
var currentNode = this.getCurrentNode();
currentNode.a += line;
// if the line doesn't end in ',' we have reached the end of the property value
// so convert the string to an array
if ( line.slice( - 1 ) !== ',' ) {
currentNode.a = parseNumberArray( currentNode.a );
}
},
// parse "Property70"
parseNodeSpecialProperty: function ( line, propName, propValue ) {
// split this
// P: "Lcl Scaling", "Lcl Scaling", "", "A",1,1,1
// into array like below
// ["Lcl Scaling", "Lcl Scaling", "", "A", "1,1,1" ]
var props = propValue.split( '",' ).map( function ( prop ) {
return prop.trim().replace( /^\"/, '' ).replace( /\s/, '_' );
} );
var innerPropName = props[ 0 ];
var innerPropType1 = props[ 1 ];
var innerPropType2 = props[ 2 ];
var innerPropFlag = props[ 3 ];
var innerPropValue = props[ 4 ];
// cast values where needed, otherwise leave as strings
switch ( innerPropType1 ) {
case 'int':
case 'enum':
case 'bool':
case 'ULongLong':
case 'double':
case 'Number':
case 'FieldOfView':
innerPropValue = parseFloat( innerPropValue );
break;
case 'Color':
case 'ColorRGB':
case 'Vector3D':
case 'Lcl_Translation':
case 'Lcl_Rotation':
case 'Lcl_Scaling':
innerPropValue = parseNumberArray( innerPropValue );
break;
}
// CAUTION: these props must append to parent's parent
this.getPrevNode()[ innerPropName ] = {
'type': innerPropType1,
'type2': innerPropType2,
'flag': innerPropFlag,
'value': innerPropValue
};
this.setCurrentProp( this.getPrevNode(), innerPropName );
},
};
// Parse an FBX file in Binary format
function BinaryParser() {}
BinaryParser.prototype = {
constructor: BinaryParser,
parse: function ( buffer ) {
var reader = new BinaryReader( buffer );
reader.skip( 23 ); // skip magic 23 bytes
var version = reader.getUint32();
console.log( 'THREE.FBXLoader: FBX binary version: ' + version );
var allNodes = new FBXTree();
while ( ! this.endOfContent( reader ) ) {
var node = this.parseNode( reader, version );
if ( node !== null ) allNodes.add( node.name, node );
}
return allNodes;
},
// Check if reader has reached the end of content.
endOfContent: function ( reader ) {
// footer size: 160bytes + 16-byte alignment padding
// - 16bytes: magic
// - padding til 16-byte alignment (at least 1byte?)
// (seems like some exporters embed fixed 15 or 16bytes?)
// - 4bytes: magic
// - 4bytes: version
// - 120bytes: zero
// - 16bytes: magic
if ( reader.size() % 16 === 0 ) {
return ( ( reader.getOffset() + 160 + 16 ) & ~ 0xf ) >= reader.size();
} else {
return reader.getOffset() + 160 + 16 >= reader.size();
}
},
// recursively parse nodes until the end of the file is reached
parseNode: function ( reader, version ) {
var node = {};
// The first three data sizes depends on version.
var endOffset = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32();
var numProperties = ( version >= 7500 ) ? reader.getUint64() : reader.getUint32();
( version >= 7500 ) ? reader.getUint64() : reader.getUint32(); // the returned propertyListLen is not used
var nameLen = reader.getUint8();
var name = reader.getString( nameLen );
// Regards this node as NULL-record if endOffset is zero
if ( endOffset === 0 ) return null;
var propertyList = [];
for ( var i = 0; i < numProperties; i ++ ) {
propertyList.push( this.parseProperty( reader ) );
}
// Regards the first three elements in propertyList as id, attrName, and attrType
var id = propertyList.length > 0 ? propertyList[ 0 ] : '';
var attrName = propertyList.length > 1 ? propertyList[ 1 ] : '';
var attrType = propertyList.length > 2 ? propertyList[ 2 ] : '';
// check if this node represents just a single property
// like (name, 0) set or (name2, [0, 1, 2]) set of {name: 0, name2: [0, 1, 2]}
node.singleProperty = ( numProperties === 1 && reader.getOffset() === endOffset ) ? true : false;
while ( endOffset > reader.getOffset() ) {
var subNode = this.parseNode( reader, version );
if ( subNode !== null ) this.parseSubNode( name, node, subNode );
}
node.propertyList = propertyList; // raw property list used by parent
if ( typeof id === 'number' ) node.id = id;
if ( attrName !== '' ) node.attrName = attrName;
if ( attrType !== '' ) node.attrType = attrType;
if ( name !== '' ) node.name = name;
return node;
},
parseSubNode: function ( name, node, subNode ) {
// special case: child node is single property
if ( subNode.singleProperty === true ) {
var value = subNode.propertyList[ 0 ];
if ( Array.isArray( value ) ) {
node[ subNode.name ] = subNode;
subNode.a = value;
} else {
node[ subNode.name ] = value;
}
} else if ( name === 'Connections' && subNode.name === 'C' ) {
var array = [];
subNode.propertyList.forEach( function ( property, i ) {
// first Connection is FBX type (OO, OP, etc.). We'll discard these
if ( i !== 0 ) array.push( property );
} );
if ( node.connections === undefined ) {
node.connections = [];
}
node.connections.push( array );
} else if ( subNode.name === 'Properties70' ) {
var keys = Object.keys( subNode );
keys.forEach( function ( key ) {
node[ key ] = subNode[ key ];
} );
} else if ( name === 'Properties70' && subNode.name === 'P' ) {
var innerPropName = subNode.propertyList[ 0 ];
var innerPropType1 = subNode.propertyList[ 1 ];
var innerPropType2 = subNode.propertyList[ 2 ];
var innerPropFlag = subNode.propertyList[ 3 ];
var innerPropValue;
if ( innerPropName.indexOf( 'Lcl ' ) === 0 ) innerPropName = innerPropName.replace( 'Lcl ', 'Lcl_' );
if ( innerPropType1.indexOf( 'Lcl ' ) === 0 ) innerPropType1 = innerPropType1.replace( 'Lcl ', 'Lcl_' );
if ( innerPropType1 === 'Color' || innerPropType1 === 'ColorRGB' || innerPropType1 === 'Vector' || innerPropType1 === 'Vector3D' || innerPropType1.indexOf( 'Lcl_' ) === 0 ) {
innerPropValue = [
subNode.propertyList[ 4 ],
subNode.propertyList[ 5 ],
subNode.propertyList[ 6 ]
];
} else {
innerPropValue = subNode.propertyList[ 4 ];
}
// this will be copied to parent, see above
node[ innerPropName ] = {
'type': innerPropType1,
'type2': innerPropType2,
'flag': innerPropFlag,
'value': innerPropValue
};
} else if ( node[ subNode.name ] === undefined ) {
if ( typeof subNode.id === 'number' ) {
node[ subNode.name ] = {};
node[ subNode.name ][ subNode.id ] = subNode;
} else {
node[ subNode.name ] = subNode;
}
} else {
if ( subNode.name === 'PoseNode' ) {
if ( ! Array.isArray( node[ subNode.name ] ) ) {
node[ subNode.name ] = [ node[ subNode.name ] ];
}
node[ subNode.name ].push( subNode );
} else if ( node[ subNode.name ][ subNode.id ] === undefined ) {
node[ subNode.name ][ subNode.id ] = subNode;
}
}
},
parseProperty: function ( reader ) {
var type = reader.getString( 1 );
switch ( type ) {
case 'C':
return reader.getBoolean();
case 'D':
return reader.getFloat64();
case 'F':
return reader.getFloat32();
case 'I':
return reader.getInt32();
case 'L':
return reader.getInt64();
case 'R':
var length = reader.getUint32();
return reader.getArrayBuffer( length );
case 'S':
var length = reader.getUint32();
return reader.getString( length );
case 'Y':
return reader.getInt16();
case 'b':
case 'c':
case 'd':
case 'f':
case 'i':
case 'l':
var arrayLength = reader.getUint32();
var encoding = reader.getUint32(); // 0: non-compressed, 1: compressed
var compressedLength = reader.getUint32();
if ( encoding === 0 ) {
switch ( type ) {
case 'b':
case 'c':
return reader.getBooleanArray( arrayLength );
case 'd':
return reader.getFloat64Array( arrayLength );
case 'f':
return reader.getFloat32Array( arrayLength );
case 'i':
return reader.getInt32Array( arrayLength );
case 'l':
return reader.getInt64Array( arrayLength );
}
}
if ( typeof Zlib === 'undefined' ) {
console.error( 'THREE.FBXLoader: External library Inflate.min.js required, obtain or import from https://github.com/imaya/zlib.js' );
}
var inflate = new Zlib.Inflate( new Uint8Array( reader.getArrayBuffer( compressedLength ) ) ); // eslint-disable-line no-undef
var reader2 = new BinaryReader( inflate.decompress().buffer );
switch ( type ) {
case 'b':
case 'c':
return reader2.getBooleanArray( arrayLength );
case 'd':
return reader2.getFloat64Array( arrayLength );
case 'f':
return reader2.getFloat32Array( arrayLength );
case 'i':
return reader2.getInt32Array( arrayLength );
case 'l':
return reader2.getInt64Array( arrayLength );
}
default:
throw new Error( 'THREE.FBXLoader: Unknown property type ' + type );
}
}
};
function BinaryReader( buffer, littleEndian ) {
this.dv = new DataView( buffer );
this.offset = 0;
this.littleEndian = ( littleEndian !== undefined ) ? littleEndian : true;
}
BinaryReader.prototype = {
constructor: BinaryReader,
getOffset: function () {
return this.offset;
},
size: function () {
return this.dv.buffer.byteLength;
},
skip: function ( length ) {
this.offset += length;
},
// seems like true/false representation depends on exporter.
// true: 1 or 'Y'(=0x59), false: 0 or 'T'(=0x54)
// then sees LSB.
getBoolean: function () {
return ( this.getUint8() & 1 ) === 1;
},
getBooleanArray: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getBoolean() );
}
return a;
},
getUint8: function () {
var value = this.dv.getUint8( this.offset );
this.offset += 1;
return value;
},
getInt16: function () {
var value = this.dv.getInt16( this.offset, this.littleEndian );
this.offset += 2;
return value;
},
getInt32: function () {
var value = this.dv.getInt32( this.offset, this.littleEndian );
this.offset += 4;
return value;
},
getInt32Array: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getInt32() );
}
return a;
},
getUint32: function () {
var value = this.dv.getUint32( this.offset, this.littleEndian );
this.offset += 4;
return value;
},
// JavaScript doesn't support 64-bit integer so calculate this here
// 1 << 32 will return 1 so using multiply operation instead here.
// There's a possibility that this method returns wrong value if the value
// is out of the range between Number.MAX_SAFE_INTEGER and Number.MIN_SAFE_INTEGER.
// TODO: safely handle 64-bit integer
getInt64: function () {
var low, high;
if ( this.littleEndian ) {
low = this.getUint32();
high = this.getUint32();
} else {
high = this.getUint32();
low = this.getUint32();
}
// calculate negative value
if ( high & 0x80000000 ) {
high = ~ high & 0xFFFFFFFF;
low = ~ low & 0xFFFFFFFF;
if ( low === 0xFFFFFFFF ) high = ( high + 1 ) & 0xFFFFFFFF;
low = ( low + 1 ) & 0xFFFFFFFF;
return - ( high * 0x100000000 + low );
}
return high * 0x100000000 + low;
},
getInt64Array: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getInt64() );
}
return a;
},
// Note: see getInt64() comment
getUint64: function () {
var low, high;
if ( this.littleEndian ) {
low = this.getUint32();
high = this.getUint32();
} else {
high = this.getUint32();
low = this.getUint32();
}
return high * 0x100000000 + low;
},
getFloat32: function () {
var value = this.dv.getFloat32( this.offset, this.littleEndian );
this.offset += 4;
return value;
},
getFloat32Array: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getFloat32() );
}
return a;
},
getFloat64: function () {
var value = this.dv.getFloat64( this.offset, this.littleEndian );
this.offset += 8;
return value;
},
getFloat64Array: function ( size ) {
var a = [];
for ( var i = 0; i < size; i ++ ) {
a.push( this.getFloat64() );
}
return a;
},
getArrayBuffer: function ( size ) {
var value = this.dv.buffer.slice( this.offset, this.offset + size );
this.offset += size;
return value;
},
getString: function ( size ) {
// note: safari 9 doesn't support Uint8Array.indexOf; create intermediate array instead
var a = [];
for ( var i = 0; i < size; i ++ ) {
a[ i ] = this.getUint8();
}
var nullByte = a.indexOf( 0 );
if ( nullByte >= 0 ) a = a.slice( 0, nullByte );
return LoaderUtils.decodeText( new Uint8Array( a ) );
}
};
// FBXTree holds a representation of the FBX data, returned by the TextParser ( FBX ASCII format)
// and BinaryParser( FBX Binary format)
function FBXTree() {}
FBXTree.prototype = {
constructor: FBXTree,
add: function ( key, val ) {
this[ key ] = val;
},
};
// ************** UTILITY FUNCTIONS **************
function isFbxFormatBinary( buffer ) {
var CORRECT = 'Kaydara FBX Binary \0';
return buffer.byteLength >= CORRECT.length && CORRECT === convertArrayBufferToString( buffer, 0, CORRECT.length );
}
function isFbxFormatASCII( text ) {
var CORRECT = [ 'K', 'a', 'y', 'd', 'a', 'r', 'a', '\\', 'F', 'B', 'X', '\\', 'B', 'i', 'n', 'a', 'r', 'y', '\\', '\\' ];
var cursor = 0;
function read( offset ) {
var result = text[ offset - 1 ];
text = text.slice( cursor + offset );
cursor ++;
return result;
}
for ( var i = 0; i < CORRECT.length; ++ i ) {
var num = read( 1 );
if ( num === CORRECT[ i ] ) {
return false;
}
}
return true;
}
function getFbxVersion( text ) {
var versionRegExp = /FBXVersion: (\d+)/;
var match = text.match( versionRegExp );
if ( match ) {
var version = parseInt( match[ 1 ] );
return version;
}
throw new Error( 'THREE.FBXLoader: Cannot find the version number for the file given.' );
}
// Converts FBX ticks into real time seconds.
function convertFBXTimeToSeconds( time ) {
return time / 46186158000;
}
var dataArray = [];
// extracts the data from the correct position in the FBX array based on indexing type
function getData( polygonVertexIndex, polygonIndex, vertexIndex, infoObject ) {
var index;
switch ( infoObject.mappingType ) {
case 'ByPolygonVertex' :
index = polygonVertexIndex;
break;
case 'ByPolygon' :
index = polygonIndex;
break;
case 'ByVertice' :
index = vertexIndex;
break;
case 'AllSame' :
index = infoObject.indices[ 0 ];
break;
default :
console.warn( 'THREE.FBXLoader: unknown attribute mapping type ' + infoObject.mappingType );
}
if ( infoObject.referenceType === 'IndexToDirect' ) index = infoObject.indices[ index ];
var from = index * infoObject.dataSize;
var to = from + infoObject.dataSize;
return slice( dataArray, infoObject.buffer, from, to );
}
var tempEuler = new Euler();
var tempVec = new Vector3();
// generate transformation from FBX transform data
// ref: https://help.autodesk.com/view/FBX/2017/ENU/?guid=__files_GUID_10CDD63C_79C1_4F2D_BB28_AD2BE65A02ED_htm
// ref: http://docs.autodesk.com/FBX/2014/ENU/FBX-SDK-Documentation/index.html?url=cpp_ref/_transformations_2main_8cxx-example.html,topicNumber=cpp_ref__transformations_2main_8cxx_example_htmlfc10a1e1-b18d-4e72-9dc0-70d0f1959f5e
function generateTransform( transformData ) {
var lTranslationM = new Matrix4();
var lPreRotationM = new Matrix4();
var lRotationM = new Matrix4();
var lPostRotationM = new Matrix4();
var lScalingM = new Matrix4();
var lScalingPivotM = new Matrix4();
var lScalingOffsetM = new Matrix4();
var lRotationOffsetM = new Matrix4();
var lRotationPivotM = new Matrix4();
var lParentGX = new Matrix4();
var lGlobalT = new Matrix4();
var inheritType = ( transformData.inheritType ) ? transformData.inheritType : 0;
if ( transformData.translation ) lTranslationM.setPosition( tempVec.fromArray( transformData.translation ) );
if ( transformData.preRotation ) {
var array = transformData.preRotation.map( MathUtils.degToRad );
array.push( transformData.eulerOrder );
lPreRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
}
if ( transformData.rotation ) {
var array = transformData.rotation.map( MathUtils.degToRad );
array.push( transformData.eulerOrder );
lRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
}
if ( transformData.postRotation ) {
var array = transformData.postRotation.map( MathUtils.degToRad );
array.push( transformData.eulerOrder );
lPostRotationM.makeRotationFromEuler( tempEuler.fromArray( array ) );
}
if ( transformData.scale ) lScalingM.scale( tempVec.fromArray( transformData.scale ) );
// Pivots and offsets
if ( transformData.scalingOffset ) lScalingOffsetM.setPosition( tempVec.fromArray( transformData.scalingOffset ) );
if ( transformData.scalingPivot ) lScalingPivotM.setPosition( tempVec.fromArray( transformData.scalingPivot ) );
if ( transformData.rotationOffset ) lRotationOffsetM.setPosition( tempVec.fromArray( transformData.rotationOffset ) );
if ( transformData.rotationPivot ) lRotationPivotM.setPosition( tempVec.fromArray( transformData.rotationPivot ) );
// parent transform
if ( transformData.parentMatrixWorld ) lParentGX = transformData.parentMatrixWorld;
// Global Rotation
var lLRM = lPreRotationM.multiply( lRotationM ).multiply( lPostRotationM );
var lParentGRM = new Matrix4();
lParentGX.extractRotation( lParentGRM );
// Global Shear*Scaling
var lParentTM = new Matrix4();
lParentTM.copyPosition( lParentGX );
var lParentGSM = new Matrix4();
lParentGSM.getInverse( lParentGRM ).multiply( lParentGX );
var lGlobalRS = new Matrix4();
if ( inheritType === 0 ) {
lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM ).multiply( lScalingM );
} else if ( inheritType === 1 ) {
lGlobalRS.copy( lParentGRM ).multiply( lParentGSM ).multiply( lLRM ).multiply( lScalingM );
} else {
var lParentLSM_inv = new Matrix4().getInverse( lScalingM );
var lParentGSM_noLocal = new Matrix4().multiply( lParentGSM ).multiply( lParentLSM_inv );
lGlobalRS.copy( lParentGRM ).multiply( lLRM ).multiply( lParentGSM_noLocal ).multiply( lScalingM );
}
var lRotationPivotM_inv = new Matrix4().getInverse( lRotationPivotM );
var lScalingPivotM_inv = new Matrix4().getInverse( lScalingPivotM );
// Calculate the local transform matrix
var lTransform = new Matrix4();
lTransform.copy( lTranslationM ).multiply( lRotationOffsetM ).multiply( lRotationPivotM ).multiply( lPreRotationM ).multiply( lRotationM ).multiply( lPostRotationM ).multiply( lRotationPivotM_inv ).multiply( lScalingOffsetM ).multiply( lScalingPivotM ).multiply( lScalingM ).multiply( lScalingPivotM_inv );
var lLocalTWithAllPivotAndOffsetInfo = new Matrix4().copyPosition( lTransform );
var lGlobalTranslation = new Matrix4().copy( lParentGX ).multiply( lLocalTWithAllPivotAndOffsetInfo );
lGlobalT.copyPosition( lGlobalTranslation );
lTransform = new Matrix4().multiply( lGlobalT ).multiply( lGlobalRS );
return lTransform;
}
// Returns the three.js intrinsic Euler order corresponding to FBX extrinsic Euler order
// ref: http://help.autodesk.com/view/FBX/2017/ENU/?guid=__cpp_ref_class_fbx_euler_html
function getEulerOrder( order ) {
order = order || 0;
var enums = [
'ZYX', // -> XYZ extrinsic
'YZX', // -> XZY extrinsic
'XZY', // -> YZX extrinsic
'ZXY', // -> YXZ extrinsic
'YXZ', // -> ZXY extrinsic
'XYZ', // -> ZYX extrinsic
//'SphericXYZ', // not possible to support
];
if ( order === 6 ) {
console.warn( 'THREE.FBXLoader: unsupported Euler Order: Spherical XYZ. Animations and rotations may be incorrect.' );
return enums[ 0 ];
}
return enums[ order ];
}
// Parses comma separated list of numbers and returns them an array.
// Used internally by the TextParser
function parseNumberArray( value ) {
var array = value.split( ',' ).map( function ( val ) {
return parseFloat( val );
} );
return array;
}
function convertArrayBufferToString( buffer, from, to ) {
if ( from === undefined ) from = 0;
if ( to === undefined ) to = buffer.byteLength;
return LoaderUtils.decodeText( new Uint8Array( buffer, from, to ) );
}
function append( a, b ) {
for ( var i = 0, j = a.length, l = b.length; i < l; i ++, j ++ ) {
a[ j ] = b[ i ];
}
}
function slice( a, b, from, to ) {
for ( var i = from, j = 0; i < to; i ++, j ++ ) {
a[ j ] = b[ i ];
}
return a;
}
// inject array a2 into array a1 at index
function inject( a1, index, a2 ) {
return a1.slice( 0, index ).concat( a2 ).concat( a1.slice( index ) );
}
return FBXLoader;
} )()
Example #7
Source File: TDSLoader.js From canvas with Apache License 2.0 | 4 votes |
TDSLoader.prototype = Object.assign( Object.create( Loader.prototype ), {
constructor: TDSLoader,
/**
* Load 3ds file from url.
*
* @method load
* @param {[type]} url URL for the file.
* @param {Function} onLoad onLoad callback, receives group Object3D as argument.
* @param {Function} onProgress onProgress callback.
* @param {Function} onError onError callback.
*/
load: function ( url, onLoad, onProgress, onError ) {
var scope = this;
var path = ( scope.path === '' ) ? LoaderUtils.extractUrlBase( url ) : scope.path;
var loader = new FileLoader( this.manager );
loader.setPath( this.path );
loader.setResponseType( 'arraybuffer' );
loader.load( url, function ( data ) {
try {
onLoad( scope.parse( data, path ) );
} catch ( e ) {
if ( onError ) {
onError( e );
} else {
console.error( e );
}
scope.manager.itemError( url );
}
}, onProgress, onError );
},
/**
* Parse arraybuffer data and load 3ds file.
*
* @method parse
* @param {ArrayBuffer} arraybuffer Arraybuffer data to be loaded.
* @param {String} path Path for external resources.
* @return {Group} Group loaded from 3ds file.
*/
parse: function ( arraybuffer, path ) {
this.group = new Group();
this.position = 0;
this.materials = [];
this.meshes = [];
this.readFile( arraybuffer, path );
for ( var i = 0; i < this.meshes.length; i ++ ) {
this.group.add( this.meshes[ i ] );
}
return this.group;
},
/**
* Decode file content to read 3ds data.
*
* @method readFile
* @param {ArrayBuffer} arraybuffer Arraybuffer data to be loaded.
* @param {String} path Path for external resources.
*/
readFile: function ( arraybuffer, path ) {
var data = new DataView( arraybuffer );
var chunk = this.readChunk( data );
if ( chunk.id === MLIBMAGIC || chunk.id === CMAGIC || chunk.id === M3DMAGIC ) {
var next = this.nextChunk( data, chunk );
while ( next !== 0 ) {
if ( next === M3D_VERSION ) {
var version = this.readDWord( data );
this.debugMessage( '3DS file version: ' + version );
} else if ( next === MDATA ) {
this.resetPosition( data );
this.readMeshData( data, path );
} else {
this.debugMessage( 'Unknown main chunk: ' + next.toString( 16 ) );
}
next = this.nextChunk( data, chunk );
}
}
this.debugMessage( 'Parsed ' + this.meshes.length + ' meshes' );
},
/**
* Read mesh data chunk.
*
* @method readMeshData
* @param {Dataview} data Dataview in use.
* @param {String} path Path for external resources.
*/
readMeshData: function ( data, path ) {
var chunk = this.readChunk( data );
var next = this.nextChunk( data, chunk );
while ( next !== 0 ) {
if ( next === MESH_VERSION ) {
var version = + this.readDWord( data );
this.debugMessage( 'Mesh Version: ' + version );
} else if ( next === MASTER_SCALE ) {
var scale = this.readFloat( data );
this.debugMessage( 'Master scale: ' + scale );
this.group.scale.set( scale, scale, scale );
} else if ( next === NAMED_OBJECT ) {
this.debugMessage( 'Named Object' );
this.resetPosition( data );
this.readNamedObject( data );
} else if ( next === MAT_ENTRY ) {
this.debugMessage( 'Material' );
this.resetPosition( data );
this.readMaterialEntry( data, path );
} else {
this.debugMessage( 'Unknown MDATA chunk: ' + next.toString( 16 ) );
}
next = this.nextChunk( data, chunk );
}
},
/**
* Read named object chunk.
*
* @method readNamedObject
* @param {Dataview} data Dataview in use.
*/
readNamedObject: function ( data ) {
var chunk = this.readChunk( data );
var name = this.readString( data, 64 );
chunk.cur = this.position;
var next = this.nextChunk( data, chunk );
while ( next !== 0 ) {
if ( next === N_TRI_OBJECT ) {
this.resetPosition( data );
var mesh = this.readMesh( data );
mesh.name = name;
this.meshes.push( mesh );
} else {
this.debugMessage( 'Unknown named object chunk: ' + next.toString( 16 ) );
}
next = this.nextChunk( data, chunk );
}
this.endChunk( chunk );
},
/**
* Read material data chunk and add it to the material list.
*
* @method readMaterialEntry
* @param {Dataview} data Dataview in use.
* @param {String} path Path for external resources.
*/
readMaterialEntry: function ( data, path ) {
var chunk = this.readChunk( data );
var next = this.nextChunk( data, chunk );
var material = new MeshPhongMaterial();
while ( next !== 0 ) {
if ( next === MAT_NAME ) {
material.name = this.readString( data, 64 );
this.debugMessage( ' Name: ' + material.name );
} else if ( next === MAT_WIRE ) {
this.debugMessage( ' Wireframe' );
material.wireframe = true;
} else if ( next === MAT_WIRE_SIZE ) {
var value = this.readByte( data );
material.wireframeLinewidth = value;
this.debugMessage( ' Wireframe Thickness: ' + value );
} else if ( next === MAT_TWO_SIDE ) {
material.side = DoubleSide;
this.debugMessage( ' DoubleSided' );
} else if ( next === MAT_ADDITIVE ) {
this.debugMessage( ' Additive Blending' );
material.blending = AdditiveBlending;
} else if ( next === MAT_DIFFUSE ) {
this.debugMessage( ' Diffuse Color' );
material.color = this.readColor( data );
} else if ( next === MAT_SPECULAR ) {
this.debugMessage( ' Specular Color' );
material.specular = this.readColor( data );
} else if ( next === MAT_AMBIENT ) {
this.debugMessage( ' Ambient color' );
material.color = this.readColor( data );
} else if ( next === MAT_SHININESS ) {
var shininess = this.readWord( data );
material.shininess = shininess;
this.debugMessage( ' Shininess : ' + shininess );
} else if ( next === MAT_TRANSPARENCY ) {
var opacity = this.readWord( data );
material.opacity = opacity * 0.01;
this.debugMessage( ' Opacity : ' + opacity );
material.transparent = opacity < 100 ? true : false;
} else if ( next === MAT_TEXMAP ) {
this.debugMessage( ' ColorMap' );
this.resetPosition( data );
material.map = this.readMap( data, path );
} else if ( next === MAT_BUMPMAP ) {
this.debugMessage( ' BumpMap' );
this.resetPosition( data );
material.bumpMap = this.readMap( data, path );
} else if ( next === MAT_OPACMAP ) {
this.debugMessage( ' OpacityMap' );
this.resetPosition( data );
material.alphaMap = this.readMap( data, path );
} else if ( next === MAT_SPECMAP ) {
this.debugMessage( ' SpecularMap' );
this.resetPosition( data );
material.specularMap = this.readMap( data, path );
} else {
this.debugMessage( ' Unknown material chunk: ' + next.toString( 16 ) );
}
next = this.nextChunk( data, chunk );
}
this.endChunk( chunk );
this.materials[ material.name ] = material;
},
/**
* Read mesh data chunk.
*
* @method readMesh
* @param {Dataview} data Dataview in use.
* @return {Mesh} The parsed mesh.
*/
readMesh: function ( data ) {
var chunk = this.readChunk( data );
var next = this.nextChunk( data, chunk );
var geometry = new BufferGeometry();
var uvs = [];
var material = new MeshPhongMaterial();
var mesh = new Mesh( geometry, material );
mesh.name = 'mesh';
while ( next !== 0 ) {
if ( next === POINT_ARRAY ) {
var points = this.readWord( data );
this.debugMessage( ' Vertex: ' + points );
//BufferGeometry
var vertices = [];
for ( var i = 0; i < points; i ++ ) {
vertices.push( this.readFloat( data ) );
vertices.push( this.readFloat( data ) );
vertices.push( this.readFloat( data ) );
}
geometry.setAttribute( 'position', new Float32BufferAttribute( vertices, 3 ) );
} else if ( next === FACE_ARRAY ) {
this.resetPosition( data );
this.readFaceArray( data, mesh );
} else if ( next === TEX_VERTS ) {
var texels = this.readWord( data );
this.debugMessage( ' UV: ' + texels );
//BufferGeometry
var uvs = [];
for ( var i = 0; i < texels; i ++ ) {
uvs.push( this.readFloat( data ) );
uvs.push( this.readFloat( data ) );
}
geometry.setAttribute( 'uv', new Float32BufferAttribute( uvs, 2 ) );
} else if ( next === MESH_MATRIX ) {
this.debugMessage( ' Tranformation Matrix (TODO)' );
var values = [];
for ( var i = 0; i < 12; i ++ ) {
values[ i ] = this.readFloat( data );
}
var matrix = new Matrix4();
//X Line
matrix.elements[ 0 ] = values[ 0 ];
matrix.elements[ 1 ] = values[ 6 ];
matrix.elements[ 2 ] = values[ 3 ];
matrix.elements[ 3 ] = values[ 9 ];
//Y Line
matrix.elements[ 4 ] = values[ 2 ];
matrix.elements[ 5 ] = values[ 8 ];
matrix.elements[ 6 ] = values[ 5 ];
matrix.elements[ 7 ] = values[ 11 ];
//Z Line
matrix.elements[ 8 ] = values[ 1 ];
matrix.elements[ 9 ] = values[ 7 ];
matrix.elements[ 10 ] = values[ 4 ];
matrix.elements[ 11 ] = values[ 10 ];
//W Line
matrix.elements[ 12 ] = 0;
matrix.elements[ 13 ] = 0;
matrix.elements[ 14 ] = 0;
matrix.elements[ 15 ] = 1;
matrix.transpose();
var inverse = new Matrix4();
inverse.getInverse( matrix );
geometry.applyMatrix4( inverse );
matrix.decompose( mesh.position, mesh.quaternion, mesh.scale );
} else {
this.debugMessage( ' Unknown mesh chunk: ' + next.toString( 16 ) );
}
next = this.nextChunk( data, chunk );
}
this.endChunk( chunk );
geometry.computeVertexNormals();
return mesh;
},
/**
* Read face array data chunk.
*
* @method readFaceArray
* @param {Dataview} data Dataview in use.
* @param {Mesh} mesh Mesh to be filled with the data read.
*/
readFaceArray: function ( data, mesh ) {
var chunk = this.readChunk( data );
var faces = this.readWord( data );
this.debugMessage( ' Faces: ' + faces );
var index = [];
for ( var i = 0; i < faces; ++ i ) {
index.push( this.readWord( data ), this.readWord( data ), this.readWord( data ) );
this.readWord( data ); // visibility
}
mesh.geometry.setIndex( index );
//The rest of the FACE_ARRAY chunk is subchunks
while ( this.position < chunk.end ) {
var chunk = this.readChunk( data );
if ( chunk.id === MSH_MAT_GROUP ) {
this.debugMessage( ' Material Group' );
this.resetPosition( data );
var group = this.readMaterialGroup( data );
var material = this.materials[ group.name ];
if ( material !== undefined ) {
mesh.material = material;
if ( material.name === '' ) {
material.name = mesh.name;
}
}
} else {
this.debugMessage( ' Unknown face array chunk: ' + chunk.toString( 16 ) );
}
this.endChunk( chunk );
}
this.endChunk( chunk );
},
/**
* Read texture map data chunk.
*
* @method readMap
* @param {Dataview} data Dataview in use.
* @param {String} path Path for external resources.
* @return {Texture} Texture read from this data chunk.
*/
readMap: function ( data, path ) {
var chunk = this.readChunk( data );
var next = this.nextChunk( data, chunk );
var texture = {};
var loader = new TextureLoader( this.manager );
loader.setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
while ( next !== 0 ) {
if ( next === MAT_MAPNAME ) {
var name = this.readString( data, 128 );
texture = loader.load( name );
this.debugMessage( ' File: ' + path + name );
} else if ( next === MAT_MAP_UOFFSET ) {
texture.offset.x = this.readFloat( data );
this.debugMessage( ' OffsetX: ' + texture.offset.x );
} else if ( next === MAT_MAP_VOFFSET ) {
texture.offset.y = this.readFloat( data );
this.debugMessage( ' OffsetY: ' + texture.offset.y );
} else if ( next === MAT_MAP_USCALE ) {
texture.repeat.x = this.readFloat( data );
this.debugMessage( ' RepeatX: ' + texture.repeat.x );
} else if ( next === MAT_MAP_VSCALE ) {
texture.repeat.y = this.readFloat( data );
this.debugMessage( ' RepeatY: ' + texture.repeat.y );
} else {
this.debugMessage( ' Unknown map chunk: ' + next.toString( 16 ) );
}
next = this.nextChunk( data, chunk );
}
this.endChunk( chunk );
return texture;
},
/**
* Read material group data chunk.
*
* @method readMaterialGroup
* @param {Dataview} data Dataview in use.
* @return {Object} Object with name and index of the object.
*/
readMaterialGroup: function ( data ) {
this.readChunk( data );
var name = this.readString( data, 64 );
var numFaces = this.readWord( data );
this.debugMessage( ' Name: ' + name );
this.debugMessage( ' Faces: ' + numFaces );
var index = [];
for ( var i = 0; i < numFaces; ++ i ) {
index.push( this.readWord( data ) );
}
return { name: name, index: index };
},
/**
* Read a color value.
*
* @method readColor
* @param {DataView} data Dataview.
* @return {Color} Color value read..
*/
readColor: function ( data ) {
var chunk = this.readChunk( data );
var color = new Color();
if ( chunk.id === COLOR_24 || chunk.id === LIN_COLOR_24 ) {
var r = this.readByte( data );
var g = this.readByte( data );
var b = this.readByte( data );
color.setRGB( r / 255, g / 255, b / 255 );
this.debugMessage( ' Color: ' + color.r + ', ' + color.g + ', ' + color.b );
} else if ( chunk.id === COLOR_F || chunk.id === LIN_COLOR_F ) {
var r = this.readFloat( data );
var g = this.readFloat( data );
var b = this.readFloat( data );
color.setRGB( r, g, b );
this.debugMessage( ' Color: ' + color.r + ', ' + color.g + ', ' + color.b );
} else {
this.debugMessage( ' Unknown color chunk: ' + chunk.toString( 16 ) );
}
this.endChunk( chunk );
return color;
},
/**
* Read next chunk of data.
*
* @method readChunk
* @param {DataView} data Dataview.
* @return {Object} Chunk of data read.
*/
readChunk: function ( data ) {
var chunk = {};
chunk.cur = this.position;
chunk.id = this.readWord( data );
chunk.size = this.readDWord( data );
chunk.end = chunk.cur + chunk.size;
chunk.cur += 6;
return chunk;
},
/**
* Set position to the end of the current chunk of data.
*
* @method endChunk
* @param {Object} chunk Data chunk.
*/
endChunk: function ( chunk ) {
this.position = chunk.end;
},
/**
* Move to the next data chunk.
*
* @method nextChunk
* @param {DataView} data Dataview.
* @param {Object} chunk Data chunk.
*/
nextChunk: function ( data, chunk ) {
if ( chunk.cur >= chunk.end ) {
return 0;
}
this.position = chunk.cur;
try {
var next = this.readChunk( data );
chunk.cur += next.size;
return next.id;
} catch ( e ) {
this.debugMessage( 'Unable to read chunk at ' + this.position );
return 0;
}
},
/**
* Reset dataview position.
*
* @method resetPosition
*/
resetPosition: function () {
this.position -= 6;
},
/**
* Read byte value.
*
* @method readByte
* @param {DataView} data Dataview to read data from.
* @return {Number} Data read from the dataview.
*/
readByte: function ( data ) {
var v = data.getUint8( this.position, true );
this.position += 1;
return v;
},
/**
* Read 32 bit float value.
*
* @method readFloat
* @param {DataView} data Dataview to read data from.
* @return {Number} Data read from the dataview.
*/
readFloat: function ( data ) {
try {
var v = data.getFloat32( this.position, true );
this.position += 4;
return v;
} catch ( e ) {
this.debugMessage( e + ' ' + this.position + ' ' + data.byteLength );
}
},
/**
* Read 32 bit signed integer value.
*
* @method readInt
* @param {DataView} data Dataview to read data from.
* @return {Number} Data read from the dataview.
*/
readInt: function ( data ) {
var v = data.getInt32( this.position, true );
this.position += 4;
return v;
},
/**
* Read 16 bit signed integer value.
*
* @method readShort
* @param {DataView} data Dataview to read data from.
* @return {Number} Data read from the dataview.
*/
readShort: function ( data ) {
var v = data.getInt16( this.position, true );
this.position += 2;
return v;
},
/**
* Read 64 bit unsigned integer value.
*
* @method readDWord
* @param {DataView} data Dataview to read data from.
* @return {Number} Data read from the dataview.
*/
readDWord: function ( data ) {
var v = data.getUint32( this.position, true );
this.position += 4;
return v;
},
/**
* Read 32 bit unsigned integer value.
*
* @method readWord
* @param {DataView} data Dataview to read data from.
* @return {Number} Data read from the dataview.
*/
readWord: function ( data ) {
var v = data.getUint16( this.position, true );
this.position += 2;
return v;
},
/**
* Read string value.
*
* @method readString
* @param {DataView} data Dataview to read data from.
* @param {Number} maxLength Max size of the string to be read.
* @return {String} Data read from the dataview.
*/
readString: function ( data, maxLength ) {
var s = '';
for ( var i = 0; i < maxLength; i ++ ) {
var c = this.readByte( data );
if ( ! c ) {
break;
}
s += String.fromCharCode( c );
}
return s;
},
/**
* Print debug message to the console.
*
* Is controlled by a flag to show or hide debug messages.
*
* @method debugMessage
* @param {Object} message Debug message to print to the console.
*/
debugMessage: function ( message ) {
if ( this.debug ) {
console.log( message );
}
}
} );
Example #8
Source File: ColladaLoader.js From Computer-Graphics with MIT License | 4 votes |
parse( text, path ) {
function getElementsByTagName( xml, name ) {
// Non recursive xml.getElementsByTagName() ...
const array = [];
const childNodes = xml.childNodes;
for ( let i = 0, l = childNodes.length; i < l; i ++ ) {
const child = childNodes[ i ];
if ( child.nodeName === name ) {
array.push( child );
}
}
return array;
}
function parseStrings( text ) {
if ( text.length === 0 ) return [];
const parts = text.trim().split( /\s+/ );
const array = new Array( parts.length );
for ( let i = 0, l = parts.length; i < l; i ++ ) {
array[ i ] = parts[ i ];
}
return array;
}
function parseFloats( text ) {
if ( text.length === 0 ) return [];
const parts = text.trim().split( /\s+/ );
const array = new Array( parts.length );
for ( let i = 0, l = parts.length; i < l; i ++ ) {
array[ i ] = parseFloat( parts[ i ] );
}
return array;
}
function parseInts( text ) {
if ( text.length === 0 ) return [];
const parts = text.trim().split( /\s+/ );
const array = new Array( parts.length );
for ( let i = 0, l = parts.length; i < l; i ++ ) {
array[ i ] = parseInt( parts[ i ] );
}
return array;
}
function parseId( text ) {
return text.substring( 1 );
}
function generateId() {
return 'three_default_' + ( count ++ );
}
function isEmpty( object ) {
return Object.keys( object ).length === 0;
}
// asset
function parseAsset( xml ) {
return {
unit: parseAssetUnit( getElementsByTagName( xml, 'unit' )[ 0 ] ),
upAxis: parseAssetUpAxis( getElementsByTagName( xml, 'up_axis' )[ 0 ] )
};
}
function parseAssetUnit( xml ) {
if ( ( xml !== undefined ) && ( xml.hasAttribute( 'meter' ) === true ) ) {
return parseFloat( xml.getAttribute( 'meter' ) );
} else {
return 1; // default 1 meter
}
}
function parseAssetUpAxis( xml ) {
return xml !== undefined ? xml.textContent : 'Y_UP';
}
// library
function parseLibrary( xml, libraryName, nodeName, parser ) {
const library = getElementsByTagName( xml, libraryName )[ 0 ];
if ( library !== undefined ) {
const elements = getElementsByTagName( library, nodeName );
for ( let i = 0; i < elements.length; i ++ ) {
parser( elements[ i ] );
}
}
}
function buildLibrary( data, builder ) {
for ( const name in data ) {
const object = data[ name ];
object.build = builder( data[ name ] );
}
}
// get
function getBuild( data, builder ) {
if ( data.build !== undefined ) return data.build;
data.build = builder( data );
return data.build;
}
// animation
function parseAnimation( xml ) {
const data = {
sources: {},
samplers: {},
channels: {}
};
let hasChildren = false;
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
let id;
switch ( child.nodeName ) {
case 'source':
id = child.getAttribute( 'id' );
data.sources[ id ] = parseSource( child );
break;
case 'sampler':
id = child.getAttribute( 'id' );
data.samplers[ id ] = parseAnimationSampler( child );
break;
case 'channel':
id = child.getAttribute( 'target' );
data.channels[ id ] = parseAnimationChannel( child );
break;
case 'animation':
// hierarchy of related animations
parseAnimation( child );
hasChildren = true;
break;
default:
console.log( child );
}
}
if ( hasChildren === false ) {
// since 'id' attributes can be optional, it's necessary to generate a UUID for unqiue assignment
library.animations[ xml.getAttribute( 'id' ) || MathUtils.generateUUID() ] = data;
}
}
function parseAnimationSampler( xml ) {
const data = {
inputs: {},
};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'input':
const id = parseId( child.getAttribute( 'source' ) );
const semantic = child.getAttribute( 'semantic' );
data.inputs[ semantic ] = id;
break;
}
}
return data;
}
function parseAnimationChannel( xml ) {
const data = {};
const target = xml.getAttribute( 'target' );
// parsing SID Addressing Syntax
let parts = target.split( '/' );
const id = parts.shift();
let sid = parts.shift();
// check selection syntax
const arraySyntax = ( sid.indexOf( '(' ) !== - 1 );
const memberSyntax = ( sid.indexOf( '.' ) !== - 1 );
if ( memberSyntax ) {
// member selection access
parts = sid.split( '.' );
sid = parts.shift();
data.member = parts.shift();
} else if ( arraySyntax ) {
// array-access syntax. can be used to express fields in one-dimensional vectors or two-dimensional matrices.
const indices = sid.split( '(' );
sid = indices.shift();
for ( let i = 0; i < indices.length; i ++ ) {
indices[ i ] = parseInt( indices[ i ].replace( /\)/, '' ) );
}
data.indices = indices;
}
data.id = id;
data.sid = sid;
data.arraySyntax = arraySyntax;
data.memberSyntax = memberSyntax;
data.sampler = parseId( xml.getAttribute( 'source' ) );
return data;
}
function buildAnimation( data ) {
const tracks = [];
const channels = data.channels;
const samplers = data.samplers;
const sources = data.sources;
for ( const target in channels ) {
if ( channels.hasOwnProperty( target ) ) {
const channel = channels[ target ];
const sampler = samplers[ channel.sampler ];
const inputId = sampler.inputs.INPUT;
const outputId = sampler.inputs.OUTPUT;
const inputSource = sources[ inputId ];
const outputSource = sources[ outputId ];
const animation = buildAnimationChannel( channel, inputSource, outputSource );
createKeyframeTracks( animation, tracks );
}
}
return tracks;
}
function getAnimation( id ) {
return getBuild( library.animations[ id ], buildAnimation );
}
function buildAnimationChannel( channel, inputSource, outputSource ) {
const node = library.nodes[ channel.id ];
const object3D = getNode( node.id );
const transform = node.transforms[ channel.sid ];
const defaultMatrix = node.matrix.clone().transpose();
let time, stride;
let i, il, j, jl;
const data = {};
// the collada spec allows the animation of data in various ways.
// depending on the transform type (matrix, translate, rotate, scale), we execute different logic
switch ( transform ) {
case 'matrix':
for ( i = 0, il = inputSource.array.length; i < il; i ++ ) {
time = inputSource.array[ i ];
stride = i * outputSource.stride;
if ( data[ time ] === undefined ) data[ time ] = {};
if ( channel.arraySyntax === true ) {
const value = outputSource.array[ stride ];
const index = channel.indices[ 0 ] + 4 * channel.indices[ 1 ];
data[ time ][ index ] = value;
} else {
for ( j = 0, jl = outputSource.stride; j < jl; j ++ ) {
data[ time ][ j ] = outputSource.array[ stride + j ];
}
}
}
break;
case 'translate':
console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
break;
case 'rotate':
console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
break;
case 'scale':
console.warn( 'THREE.ColladaLoader: Animation transform type "%s" not yet implemented.', transform );
break;
}
const keyframes = prepareAnimationData( data, defaultMatrix );
const animation = {
name: object3D.uuid,
keyframes: keyframes
};
return animation;
}
function prepareAnimationData( data, defaultMatrix ) {
const keyframes = [];
// transfer data into a sortable array
for ( const time in data ) {
keyframes.push( { time: parseFloat( time ), value: data[ time ] } );
}
// ensure keyframes are sorted by time
keyframes.sort( ascending );
// now we clean up all animation data, so we can use them for keyframe tracks
for ( let i = 0; i < 16; i ++ ) {
transformAnimationData( keyframes, i, defaultMatrix.elements[ i ] );
}
return keyframes;
// array sort function
function ascending( a, b ) {
return a.time - b.time;
}
}
const position = new Vector3();
const scale = new Vector3();
const quaternion = new Quaternion();
function createKeyframeTracks( animation, tracks ) {
const keyframes = animation.keyframes;
const name = animation.name;
const times = [];
const positionData = [];
const quaternionData = [];
const scaleData = [];
for ( let i = 0, l = keyframes.length; i < l; i ++ ) {
const keyframe = keyframes[ i ];
const time = keyframe.time;
const value = keyframe.value;
matrix.fromArray( value ).transpose();
matrix.decompose( position, quaternion, scale );
times.push( time );
positionData.push( position.x, position.y, position.z );
quaternionData.push( quaternion.x, quaternion.y, quaternion.z, quaternion.w );
scaleData.push( scale.x, scale.y, scale.z );
}
if ( positionData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.position', times, positionData ) );
if ( quaternionData.length > 0 ) tracks.push( new QuaternionKeyframeTrack( name + '.quaternion', times, quaternionData ) );
if ( scaleData.length > 0 ) tracks.push( new VectorKeyframeTrack( name + '.scale', times, scaleData ) );
return tracks;
}
function transformAnimationData( keyframes, property, defaultValue ) {
let keyframe;
let empty = true;
let i, l;
// check, if values of a property are missing in our keyframes
for ( i = 0, l = keyframes.length; i < l; i ++ ) {
keyframe = keyframes[ i ];
if ( keyframe.value[ property ] === undefined ) {
keyframe.value[ property ] = null; // mark as missing
} else {
empty = false;
}
}
if ( empty === true ) {
// no values at all, so we set a default value
for ( i = 0, l = keyframes.length; i < l; i ++ ) {
keyframe = keyframes[ i ];
keyframe.value[ property ] = defaultValue;
}
} else {
// filling gaps
createMissingKeyframes( keyframes, property );
}
}
function createMissingKeyframes( keyframes, property ) {
let prev, next;
for ( let i = 0, l = keyframes.length; i < l; i ++ ) {
const keyframe = keyframes[ i ];
if ( keyframe.value[ property ] === null ) {
prev = getPrev( keyframes, i, property );
next = getNext( keyframes, i, property );
if ( prev === null ) {
keyframe.value[ property ] = next.value[ property ];
continue;
}
if ( next === null ) {
keyframe.value[ property ] = prev.value[ property ];
continue;
}
interpolate( keyframe, prev, next, property );
}
}
}
function getPrev( keyframes, i, property ) {
while ( i >= 0 ) {
const keyframe = keyframes[ i ];
if ( keyframe.value[ property ] !== null ) return keyframe;
i --;
}
return null;
}
function getNext( keyframes, i, property ) {
while ( i < keyframes.length ) {
const keyframe = keyframes[ i ];
if ( keyframe.value[ property ] !== null ) return keyframe;
i ++;
}
return null;
}
function interpolate( key, prev, next, property ) {
if ( ( next.time - prev.time ) === 0 ) {
key.value[ property ] = prev.value[ property ];
return;
}
key.value[ property ] = ( ( key.time - prev.time ) * ( next.value[ property ] - prev.value[ property ] ) / ( next.time - prev.time ) ) + prev.value[ property ];
}
// animation clips
function parseAnimationClip( xml ) {
const data = {
name: xml.getAttribute( 'id' ) || 'default',
start: parseFloat( xml.getAttribute( 'start' ) || 0 ),
end: parseFloat( xml.getAttribute( 'end' ) || 0 ),
animations: []
};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'instance_animation':
data.animations.push( parseId( child.getAttribute( 'url' ) ) );
break;
}
}
library.clips[ xml.getAttribute( 'id' ) ] = data;
}
function buildAnimationClip( data ) {
const tracks = [];
const name = data.name;
const duration = ( data.end - data.start ) || - 1;
const animations = data.animations;
for ( let i = 0, il = animations.length; i < il; i ++ ) {
const animationTracks = getAnimation( animations[ i ] );
for ( let j = 0, jl = animationTracks.length; j < jl; j ++ ) {
tracks.push( animationTracks[ j ] );
}
}
return new AnimationClip( name, duration, tracks );
}
function getAnimationClip( id ) {
return getBuild( library.clips[ id ], buildAnimationClip );
}
// controller
function parseController( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'skin':
// there is exactly one skin per controller
data.id = parseId( child.getAttribute( 'source' ) );
data.skin = parseSkin( child );
break;
case 'morph':
data.id = parseId( child.getAttribute( 'source' ) );
console.warn( 'THREE.ColladaLoader: Morph target animation not supported yet.' );
break;
}
}
library.controllers[ xml.getAttribute( 'id' ) ] = data;
}
function parseSkin( xml ) {
const data = {
sources: {}
};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'bind_shape_matrix':
data.bindShapeMatrix = parseFloats( child.textContent );
break;
case 'source':
const id = child.getAttribute( 'id' );
data.sources[ id ] = parseSource( child );
break;
case 'joints':
data.joints = parseJoints( child );
break;
case 'vertex_weights':
data.vertexWeights = parseVertexWeights( child );
break;
}
}
return data;
}
function parseJoints( xml ) {
const data = {
inputs: {}
};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'input':
const semantic = child.getAttribute( 'semantic' );
const id = parseId( child.getAttribute( 'source' ) );
data.inputs[ semantic ] = id;
break;
}
}
return data;
}
function parseVertexWeights( xml ) {
const data = {
inputs: {}
};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'input':
const semantic = child.getAttribute( 'semantic' );
const id = parseId( child.getAttribute( 'source' ) );
const offset = parseInt( child.getAttribute( 'offset' ) );
data.inputs[ semantic ] = { id: id, offset: offset };
break;
case 'vcount':
data.vcount = parseInts( child.textContent );
break;
case 'v':
data.v = parseInts( child.textContent );
break;
}
}
return data;
}
function buildController( data ) {
const build = {
id: data.id
};
const geometry = library.geometries[ build.id ];
if ( data.skin !== undefined ) {
build.skin = buildSkin( data.skin );
// we enhance the 'sources' property of the corresponding geometry with our skin data
geometry.sources.skinIndices = build.skin.indices;
geometry.sources.skinWeights = build.skin.weights;
}
return build;
}
function buildSkin( data ) {
const BONE_LIMIT = 4;
const build = {
joints: [], // this must be an array to preserve the joint order
indices: {
array: [],
stride: BONE_LIMIT
},
weights: {
array: [],
stride: BONE_LIMIT
}
};
const sources = data.sources;
const vertexWeights = data.vertexWeights;
const vcount = vertexWeights.vcount;
const v = vertexWeights.v;
const jointOffset = vertexWeights.inputs.JOINT.offset;
const weightOffset = vertexWeights.inputs.WEIGHT.offset;
const jointSource = data.sources[ data.joints.inputs.JOINT ];
const inverseSource = data.sources[ data.joints.inputs.INV_BIND_MATRIX ];
const weights = sources[ vertexWeights.inputs.WEIGHT.id ].array;
let stride = 0;
let i, j, l;
// procces skin data for each vertex
for ( i = 0, l = vcount.length; i < l; i ++ ) {
const jointCount = vcount[ i ]; // this is the amount of joints that affect a single vertex
const vertexSkinData = [];
for ( j = 0; j < jointCount; j ++ ) {
const skinIndex = v[ stride + jointOffset ];
const weightId = v[ stride + weightOffset ];
const skinWeight = weights[ weightId ];
vertexSkinData.push( { index: skinIndex, weight: skinWeight } );
stride += 2;
}
// we sort the joints in descending order based on the weights.
// this ensures, we only procced the most important joints of the vertex
vertexSkinData.sort( descending );
// now we provide for each vertex a set of four index and weight values.
// the order of the skin data matches the order of vertices
for ( j = 0; j < BONE_LIMIT; j ++ ) {
const d = vertexSkinData[ j ];
if ( d !== undefined ) {
build.indices.array.push( d.index );
build.weights.array.push( d.weight );
} else {
build.indices.array.push( 0 );
build.weights.array.push( 0 );
}
}
}
// setup bind matrix
if ( data.bindShapeMatrix ) {
build.bindMatrix = new Matrix4().fromArray( data.bindShapeMatrix ).transpose();
} else {
build.bindMatrix = new Matrix4().identity();
}
// process bones and inverse bind matrix data
for ( i = 0, l = jointSource.array.length; i < l; i ++ ) {
const name = jointSource.array[ i ];
const boneInverse = new Matrix4().fromArray( inverseSource.array, i * inverseSource.stride ).transpose();
build.joints.push( { name: name, boneInverse: boneInverse } );
}
return build;
// array sort function
function descending( a, b ) {
return b.weight - a.weight;
}
}
function getController( id ) {
return getBuild( library.controllers[ id ], buildController );
}
// image
function parseImage( xml ) {
const data = {
init_from: getElementsByTagName( xml, 'init_from' )[ 0 ].textContent
};
library.images[ xml.getAttribute( 'id' ) ] = data;
}
function buildImage( data ) {
if ( data.build !== undefined ) return data.build;
return data.init_from;
}
function getImage( id ) {
const data = library.images[ id ];
if ( data !== undefined ) {
return getBuild( data, buildImage );
}
console.warn( 'THREE.ColladaLoader: Couldn\'t find image with ID:', id );
return null;
}
// effect
function parseEffect( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'profile_COMMON':
data.profile = parseEffectProfileCOMMON( child );
break;
}
}
library.effects[ xml.getAttribute( 'id' ) ] = data;
}
function parseEffectProfileCOMMON( xml ) {
const data = {
surfaces: {},
samplers: {}
};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'newparam':
parseEffectNewparam( child, data );
break;
case 'technique':
data.technique = parseEffectTechnique( child );
break;
case 'extra':
data.extra = parseEffectExtra( child );
break;
}
}
return data;
}
function parseEffectNewparam( xml, data ) {
const sid = xml.getAttribute( 'sid' );
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'surface':
data.surfaces[ sid ] = parseEffectSurface( child );
break;
case 'sampler2D':
data.samplers[ sid ] = parseEffectSampler( child );
break;
}
}
}
function parseEffectSurface( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'init_from':
data.init_from = child.textContent;
break;
}
}
return data;
}
function parseEffectSampler( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'source':
data.source = child.textContent;
break;
}
}
return data;
}
function parseEffectTechnique( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'constant':
case 'lambert':
case 'blinn':
case 'phong':
data.type = child.nodeName;
data.parameters = parseEffectParameters( child );
break;
case 'extra':
data.extra = parseEffectExtra( child );
break;
}
}
return data;
}
function parseEffectParameters( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'emission':
case 'diffuse':
case 'specular':
case 'bump':
case 'ambient':
case 'shininess':
case 'transparency':
data[ child.nodeName ] = parseEffectParameter( child );
break;
case 'transparent':
data[ child.nodeName ] = {
opaque: child.hasAttribute( 'opaque' ) ? child.getAttribute( 'opaque' ) : 'A_ONE',
data: parseEffectParameter( child )
};
break;
}
}
return data;
}
function parseEffectParameter( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'color':
data[ child.nodeName ] = parseFloats( child.textContent );
break;
case 'float':
data[ child.nodeName ] = parseFloat( child.textContent );
break;
case 'texture':
data[ child.nodeName ] = { id: child.getAttribute( 'texture' ), extra: parseEffectParameterTexture( child ) };
break;
}
}
return data;
}
function parseEffectParameterTexture( xml ) {
const data = {
technique: {}
};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'extra':
parseEffectParameterTextureExtra( child, data );
break;
}
}
return data;
}
function parseEffectParameterTextureExtra( xml, data ) {
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'technique':
parseEffectParameterTextureExtraTechnique( child, data );
break;
}
}
}
function parseEffectParameterTextureExtraTechnique( xml, data ) {
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'repeatU':
case 'repeatV':
case 'offsetU':
case 'offsetV':
data.technique[ child.nodeName ] = parseFloat( child.textContent );
break;
case 'wrapU':
case 'wrapV':
// some files have values for wrapU/wrapV which become NaN via parseInt
if ( child.textContent.toUpperCase() === 'TRUE' ) {
data.technique[ child.nodeName ] = 1;
} else if ( child.textContent.toUpperCase() === 'FALSE' ) {
data.technique[ child.nodeName ] = 0;
} else {
data.technique[ child.nodeName ] = parseInt( child.textContent );
}
break;
case 'bump':
data[ child.nodeName ] = parseEffectExtraTechniqueBump( child );
break;
}
}
}
function parseEffectExtra( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'technique':
data.technique = parseEffectExtraTechnique( child );
break;
}
}
return data;
}
function parseEffectExtraTechnique( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'double_sided':
data[ child.nodeName ] = parseInt( child.textContent );
break;
case 'bump':
data[ child.nodeName ] = parseEffectExtraTechniqueBump( child );
break;
}
}
return data;
}
function parseEffectExtraTechniqueBump( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'texture':
data[ child.nodeName ] = { id: child.getAttribute( 'texture' ), texcoord: child.getAttribute( 'texcoord' ), extra: parseEffectParameterTexture( child ) };
break;
}
}
return data;
}
function buildEffect( data ) {
return data;
}
function getEffect( id ) {
return getBuild( library.effects[ id ], buildEffect );
}
// material
function parseMaterial( xml ) {
const data = {
name: xml.getAttribute( 'name' )
};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'instance_effect':
data.url = parseId( child.getAttribute( 'url' ) );
break;
}
}
library.materials[ xml.getAttribute( 'id' ) ] = data;
}
function getTextureLoader( image ) {
let loader;
let extension = image.slice( ( image.lastIndexOf( '.' ) - 1 >>> 0 ) + 2 ); // http://www.jstips.co/en/javascript/get-file-extension/
extension = extension.toLowerCase();
switch ( extension ) {
case 'tga':
loader = tgaLoader;
break;
default:
loader = textureLoader;
}
return loader;
}
function buildMaterial( data ) {
const effect = getEffect( data.url );
const technique = effect.profile.technique;
let material;
switch ( technique.type ) {
case 'phong':
case 'blinn':
material = new MeshPhongMaterial();
break;
case 'lambert':
material = new MeshLambertMaterial();
break;
default:
material = new MeshBasicMaterial();
break;
}
material.name = data.name || '';
function getTexture( textureObject, encoding = null ) {
const sampler = effect.profile.samplers[ textureObject.id ];
let image = null;
// get image
if ( sampler !== undefined ) {
const surface = effect.profile.surfaces[ sampler.source ];
image = getImage( surface.init_from );
} else {
console.warn( 'THREE.ColladaLoader: Undefined sampler. Access image directly (see #12530).' );
image = getImage( textureObject.id );
}
// create texture if image is avaiable
if ( image !== null ) {
const loader = getTextureLoader( image );
if ( loader !== undefined ) {
const texture = loader.load( image );
const extra = textureObject.extra;
if ( extra !== undefined && extra.technique !== undefined && isEmpty( extra.technique ) === false ) {
const technique = extra.technique;
texture.wrapS = technique.wrapU ? RepeatWrapping : ClampToEdgeWrapping;
texture.wrapT = technique.wrapV ? RepeatWrapping : ClampToEdgeWrapping;
texture.offset.set( technique.offsetU || 0, technique.offsetV || 0 );
texture.repeat.set( technique.repeatU || 1, technique.repeatV || 1 );
} else {
texture.wrapS = RepeatWrapping;
texture.wrapT = RepeatWrapping;
}
if ( encoding !== null ) {
texture.encoding = encoding;
}
return texture;
} else {
console.warn( 'THREE.ColladaLoader: Loader for texture %s not found.', image );
return null;
}
} else {
console.warn( 'THREE.ColladaLoader: Couldn\'t create texture with ID:', textureObject.id );
return null;
}
}
const parameters = technique.parameters;
for ( const key in parameters ) {
const parameter = parameters[ key ];
switch ( key ) {
case 'diffuse':
if ( parameter.color ) material.color.fromArray( parameter.color );
if ( parameter.texture ) material.map = getTexture( parameter.texture, sRGBEncoding );
break;
case 'specular':
if ( parameter.color && material.specular ) material.specular.fromArray( parameter.color );
if ( parameter.texture ) material.specularMap = getTexture( parameter.texture );
break;
case 'bump':
if ( parameter.texture ) material.normalMap = getTexture( parameter.texture );
break;
case 'ambient':
if ( parameter.texture ) material.lightMap = getTexture( parameter.texture, sRGBEncoding );
break;
case 'shininess':
if ( parameter.float && material.shininess ) material.shininess = parameter.float;
break;
case 'emission':
if ( parameter.color && material.emissive ) material.emissive.fromArray( parameter.color );
if ( parameter.texture ) material.emissiveMap = getTexture( parameter.texture, sRGBEncoding );
break;
}
}
material.color.convertSRGBToLinear();
if ( material.specular ) material.specular.convertSRGBToLinear();
if ( material.emissive ) material.emissive.convertSRGBToLinear();
//
let transparent = parameters[ 'transparent' ];
let transparency = parameters[ 'transparency' ];
// <transparency> does not exist but <transparent>
if ( transparency === undefined && transparent ) {
transparency = {
float: 1
};
}
// <transparent> does not exist but <transparency>
if ( transparent === undefined && transparency ) {
transparent = {
opaque: 'A_ONE',
data: {
color: [ 1, 1, 1, 1 ]
} };
}
if ( transparent && transparency ) {
// handle case if a texture exists but no color
if ( transparent.data.texture ) {
// we do not set an alpha map (see #13792)
material.transparent = true;
} else {
const color = transparent.data.color;
switch ( transparent.opaque ) {
case 'A_ONE':
material.opacity = color[ 3 ] * transparency.float;
break;
case 'RGB_ZERO':
material.opacity = 1 - ( color[ 0 ] * transparency.float );
break;
case 'A_ZERO':
material.opacity = 1 - ( color[ 3 ] * transparency.float );
break;
case 'RGB_ONE':
material.opacity = color[ 0 ] * transparency.float;
break;
default:
console.warn( 'THREE.ColladaLoader: Invalid opaque type "%s" of transparent tag.', transparent.opaque );
}
if ( material.opacity < 1 ) material.transparent = true;
}
}
//
if ( technique.extra !== undefined && technique.extra.technique !== undefined ) {
const techniques = technique.extra.technique;
for ( const k in techniques ) {
const v = techniques[ k ];
switch ( k ) {
case 'double_sided':
material.side = ( v === 1 ? DoubleSide : FrontSide );
break;
case 'bump':
material.normalMap = getTexture( v.texture );
material.normalScale = new Vector2( 1, 1 );
break;
}
}
}
return material;
}
function getMaterial( id ) {
return getBuild( library.materials[ id ], buildMaterial );
}
// camera
function parseCamera( xml ) {
const data = {
name: xml.getAttribute( 'name' )
};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'optics':
data.optics = parseCameraOptics( child );
break;
}
}
library.cameras[ xml.getAttribute( 'id' ) ] = data;
}
function parseCameraOptics( xml ) {
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
switch ( child.nodeName ) {
case 'technique_common':
return parseCameraTechnique( child );
}
}
return {};
}
function parseCameraTechnique( xml ) {
const data = {};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
switch ( child.nodeName ) {
case 'perspective':
case 'orthographic':
data.technique = child.nodeName;
data.parameters = parseCameraParameters( child );
break;
}
}
return data;
}
function parseCameraParameters( xml ) {
const data = {};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
switch ( child.nodeName ) {
case 'xfov':
case 'yfov':
case 'xmag':
case 'ymag':
case 'znear':
case 'zfar':
case 'aspect_ratio':
data[ child.nodeName ] = parseFloat( child.textContent );
break;
}
}
return data;
}
function buildCamera( data ) {
let camera;
switch ( data.optics.technique ) {
case 'perspective':
camera = new PerspectiveCamera(
data.optics.parameters.yfov,
data.optics.parameters.aspect_ratio,
data.optics.parameters.znear,
data.optics.parameters.zfar
);
break;
case 'orthographic':
let ymag = data.optics.parameters.ymag;
let xmag = data.optics.parameters.xmag;
const aspectRatio = data.optics.parameters.aspect_ratio;
xmag = ( xmag === undefined ) ? ( ymag * aspectRatio ) : xmag;
ymag = ( ymag === undefined ) ? ( xmag / aspectRatio ) : ymag;
xmag *= 0.5;
ymag *= 0.5;
camera = new OrthographicCamera(
- xmag, xmag, ymag, - ymag, // left, right, top, bottom
data.optics.parameters.znear,
data.optics.parameters.zfar
);
break;
default:
camera = new PerspectiveCamera();
break;
}
camera.name = data.name || '';
return camera;
}
function getCamera( id ) {
const data = library.cameras[ id ];
if ( data !== undefined ) {
return getBuild( data, buildCamera );
}
console.warn( 'THREE.ColladaLoader: Couldn\'t find camera with ID:', id );
return null;
}
// light
function parseLight( xml ) {
let data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'technique_common':
data = parseLightTechnique( child );
break;
}
}
library.lights[ xml.getAttribute( 'id' ) ] = data;
}
function parseLightTechnique( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'directional':
case 'point':
case 'spot':
case 'ambient':
data.technique = child.nodeName;
data.parameters = parseLightParameters( child );
}
}
return data;
}
function parseLightParameters( xml ) {
const data = {};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'color':
const array = parseFloats( child.textContent );
data.color = new Color().fromArray( array ).convertSRGBToLinear();
break;
case 'falloff_angle':
data.falloffAngle = parseFloat( child.textContent );
break;
case 'quadratic_attenuation':
const f = parseFloat( child.textContent );
data.distance = f ? Math.sqrt( 1 / f ) : 0;
break;
}
}
return data;
}
function buildLight( data ) {
let light;
switch ( data.technique ) {
case 'directional':
light = new DirectionalLight();
break;
case 'point':
light = new PointLight();
break;
case 'spot':
light = new SpotLight();
break;
case 'ambient':
light = new AmbientLight();
break;
}
if ( data.parameters.color ) light.color.copy( data.parameters.color );
if ( data.parameters.distance ) light.distance = data.parameters.distance;
return light;
}
function getLight( id ) {
const data = library.lights[ id ];
if ( data !== undefined ) {
return getBuild( data, buildLight );
}
console.warn( 'THREE.ColladaLoader: Couldn\'t find light with ID:', id );
return null;
}
// geometry
function parseGeometry( xml ) {
const data = {
name: xml.getAttribute( 'name' ),
sources: {},
vertices: {},
primitives: []
};
const mesh = getElementsByTagName( xml, 'mesh' )[ 0 ];
// the following tags inside geometry are not supported yet (see https://github.com/mrdoob/three.js/pull/12606): convex_mesh, spline, brep
if ( mesh === undefined ) return;
for ( let i = 0; i < mesh.childNodes.length; i ++ ) {
const child = mesh.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
const id = child.getAttribute( 'id' );
switch ( child.nodeName ) {
case 'source':
data.sources[ id ] = parseSource( child );
break;
case 'vertices':
// data.sources[ id ] = data.sources[ parseId( getElementsByTagName( child, 'input' )[ 0 ].getAttribute( 'source' ) ) ];
data.vertices = parseGeometryVertices( child );
break;
case 'polygons':
console.warn( 'THREE.ColladaLoader: Unsupported primitive type: ', child.nodeName );
break;
case 'lines':
case 'linestrips':
case 'polylist':
case 'triangles':
data.primitives.push( parseGeometryPrimitive( child ) );
break;
default:
console.log( child );
}
}
library.geometries[ xml.getAttribute( 'id' ) ] = data;
}
function parseSource( xml ) {
const data = {
array: [],
stride: 3
};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'float_array':
data.array = parseFloats( child.textContent );
break;
case 'Name_array':
data.array = parseStrings( child.textContent );
break;
case 'technique_common':
const accessor = getElementsByTagName( child, 'accessor' )[ 0 ];
if ( accessor !== undefined ) {
data.stride = parseInt( accessor.getAttribute( 'stride' ) );
}
break;
}
}
return data;
}
function parseGeometryVertices( xml ) {
const data = {};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
data[ child.getAttribute( 'semantic' ) ] = parseId( child.getAttribute( 'source' ) );
}
return data;
}
function parseGeometryPrimitive( xml ) {
const primitive = {
type: xml.nodeName,
material: xml.getAttribute( 'material' ),
count: parseInt( xml.getAttribute( 'count' ) ),
inputs: {},
stride: 0,
hasUV: false
};
for ( let i = 0, l = xml.childNodes.length; i < l; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'input':
const id = parseId( child.getAttribute( 'source' ) );
const semantic = child.getAttribute( 'semantic' );
const offset = parseInt( child.getAttribute( 'offset' ) );
const set = parseInt( child.getAttribute( 'set' ) );
const inputname = ( set > 0 ? semantic + set : semantic );
primitive.inputs[ inputname ] = { id: id, offset: offset };
primitive.stride = Math.max( primitive.stride, offset + 1 );
if ( semantic === 'TEXCOORD' ) primitive.hasUV = true;
break;
case 'vcount':
primitive.vcount = parseInts( child.textContent );
break;
case 'p':
primitive.p = parseInts( child.textContent );
break;
}
}
return primitive;
}
function groupPrimitives( primitives ) {
const build = {};
for ( let i = 0; i < primitives.length; i ++ ) {
const primitive = primitives[ i ];
if ( build[ primitive.type ] === undefined ) build[ primitive.type ] = [];
build[ primitive.type ].push( primitive );
}
return build;
}
function checkUVCoordinates( primitives ) {
let count = 0;
for ( let i = 0, l = primitives.length; i < l; i ++ ) {
const primitive = primitives[ i ];
if ( primitive.hasUV === true ) {
count ++;
}
}
if ( count > 0 && count < primitives.length ) {
primitives.uvsNeedsFix = true;
}
}
function buildGeometry( data ) {
const build = {};
const sources = data.sources;
const vertices = data.vertices;
const primitives = data.primitives;
if ( primitives.length === 0 ) return {};
// our goal is to create one buffer geometry for a single type of primitives
// first, we group all primitives by their type
const groupedPrimitives = groupPrimitives( primitives );
for ( const type in groupedPrimitives ) {
const primitiveType = groupedPrimitives[ type ];
// second, ensure consistent uv coordinates for each type of primitives (polylist,triangles or lines)
checkUVCoordinates( primitiveType );
// third, create a buffer geometry for each type of primitives
build[ type ] = buildGeometryType( primitiveType, sources, vertices );
}
return build;
}
function buildGeometryType( primitives, sources, vertices ) {
const build = {};
const position = { array: [], stride: 0 };
const normal = { array: [], stride: 0 };
const uv = { array: [], stride: 0 };
const uv2 = { array: [], stride: 0 };
const color = { array: [], stride: 0 };
const skinIndex = { array: [], stride: 4 };
const skinWeight = { array: [], stride: 4 };
const geometry = new BufferGeometry();
const materialKeys = [];
let start = 0;
for ( let p = 0; p < primitives.length; p ++ ) {
const primitive = primitives[ p ];
const inputs = primitive.inputs;
// groups
let count = 0;
switch ( primitive.type ) {
case 'lines':
case 'linestrips':
count = primitive.count * 2;
break;
case 'triangles':
count = primitive.count * 3;
break;
case 'polylist':
for ( let g = 0; g < primitive.count; g ++ ) {
const vc = primitive.vcount[ g ];
switch ( vc ) {
case 3:
count += 3; // single triangle
break;
case 4:
count += 6; // quad, subdivided into two triangles
break;
default:
count += ( vc - 2 ) * 3; // polylist with more than four vertices
break;
}
}
break;
default:
console.warn( 'THREE.ColladaLoader: Unknow primitive type:', primitive.type );
}
geometry.addGroup( start, count, p );
start += count;
// material
if ( primitive.material ) {
materialKeys.push( primitive.material );
}
// geometry data
for ( const name in inputs ) {
const input = inputs[ name ];
switch ( name ) {
case 'VERTEX':
for ( const key in vertices ) {
const id = vertices[ key ];
switch ( key ) {
case 'POSITION':
const prevLength = position.array.length;
buildGeometryData( primitive, sources[ id ], input.offset, position.array );
position.stride = sources[ id ].stride;
if ( sources.skinWeights && sources.skinIndices ) {
buildGeometryData( primitive, sources.skinIndices, input.offset, skinIndex.array );
buildGeometryData( primitive, sources.skinWeights, input.offset, skinWeight.array );
}
// see #3803
if ( primitive.hasUV === false && primitives.uvsNeedsFix === true ) {
const count = ( position.array.length - prevLength ) / position.stride;
for ( let i = 0; i < count; i ++ ) {
// fill missing uv coordinates
uv.array.push( 0, 0 );
}
}
break;
case 'NORMAL':
buildGeometryData( primitive, sources[ id ], input.offset, normal.array );
normal.stride = sources[ id ].stride;
break;
case 'COLOR':
buildGeometryData( primitive, sources[ id ], input.offset, color.array );
color.stride = sources[ id ].stride;
break;
case 'TEXCOORD':
buildGeometryData( primitive, sources[ id ], input.offset, uv.array );
uv.stride = sources[ id ].stride;
break;
case 'TEXCOORD1':
buildGeometryData( primitive, sources[ id ], input.offset, uv2.array );
uv.stride = sources[ id ].stride;
break;
default:
console.warn( 'THREE.ColladaLoader: Semantic "%s" not handled in geometry build process.', key );
}
}
break;
case 'NORMAL':
buildGeometryData( primitive, sources[ input.id ], input.offset, normal.array );
normal.stride = sources[ input.id ].stride;
break;
case 'COLOR':
buildGeometryData( primitive, sources[ input.id ], input.offset, color.array, true );
color.stride = sources[ input.id ].stride;
break;
case 'TEXCOORD':
buildGeometryData( primitive, sources[ input.id ], input.offset, uv.array );
uv.stride = sources[ input.id ].stride;
break;
case 'TEXCOORD1':
buildGeometryData( primitive, sources[ input.id ], input.offset, uv2.array );
uv2.stride = sources[ input.id ].stride;
break;
}
}
}
// build geometry
if ( position.array.length > 0 ) geometry.setAttribute( 'position', new Float32BufferAttribute( position.array, position.stride ) );
if ( normal.array.length > 0 ) geometry.setAttribute( 'normal', new Float32BufferAttribute( normal.array, normal.stride ) );
if ( color.array.length > 0 ) geometry.setAttribute( 'color', new Float32BufferAttribute( color.array, color.stride ) );
if ( uv.array.length > 0 ) geometry.setAttribute( 'uv', new Float32BufferAttribute( uv.array, uv.stride ) );
if ( uv2.array.length > 0 ) geometry.setAttribute( 'uv2', new Float32BufferAttribute( uv2.array, uv2.stride ) );
if ( skinIndex.array.length > 0 ) geometry.setAttribute( 'skinIndex', new Float32BufferAttribute( skinIndex.array, skinIndex.stride ) );
if ( skinWeight.array.length > 0 ) geometry.setAttribute( 'skinWeight', new Float32BufferAttribute( skinWeight.array, skinWeight.stride ) );
build.data = geometry;
build.type = primitives[ 0 ].type;
build.materialKeys = materialKeys;
return build;
}
function buildGeometryData( primitive, source, offset, array, isColor = false ) {
const indices = primitive.p;
const stride = primitive.stride;
const vcount = primitive.vcount;
function pushVector( i ) {
let index = indices[ i + offset ] * sourceStride;
const length = index + sourceStride;
for ( ; index < length; index ++ ) {
array.push( sourceArray[ index ] );
}
if ( isColor ) {
// convert the vertex colors from srgb to linear if present
const startIndex = array.length - sourceStride - 1;
tempColor.setRGB(
array[ startIndex + 0 ],
array[ startIndex + 1 ],
array[ startIndex + 2 ]
).convertSRGBToLinear();
array[ startIndex + 0 ] = tempColor.r;
array[ startIndex + 1 ] = tempColor.g;
array[ startIndex + 2 ] = tempColor.b;
}
}
const sourceArray = source.array;
const sourceStride = source.stride;
if ( primitive.vcount !== undefined ) {
let index = 0;
for ( let i = 0, l = vcount.length; i < l; i ++ ) {
const count = vcount[ i ];
if ( count === 4 ) {
const a = index + stride * 0;
const b = index + stride * 1;
const c = index + stride * 2;
const d = index + stride * 3;
pushVector( a ); pushVector( b ); pushVector( d );
pushVector( b ); pushVector( c ); pushVector( d );
} else if ( count === 3 ) {
const a = index + stride * 0;
const b = index + stride * 1;
const c = index + stride * 2;
pushVector( a ); pushVector( b ); pushVector( c );
} else if ( count > 4 ) {
for ( let k = 1, kl = ( count - 2 ); k <= kl; k ++ ) {
const a = index + stride * 0;
const b = index + stride * k;
const c = index + stride * ( k + 1 );
pushVector( a ); pushVector( b ); pushVector( c );
}
}
index += stride * count;
}
} else {
for ( let i = 0, l = indices.length; i < l; i += stride ) {
pushVector( i );
}
}
}
function getGeometry( id ) {
return getBuild( library.geometries[ id ], buildGeometry );
}
// kinematics
function parseKinematicsModel( xml ) {
const data = {
name: xml.getAttribute( 'name' ) || '',
joints: {},
links: []
};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'technique_common':
parseKinematicsTechniqueCommon( child, data );
break;
}
}
library.kinematicsModels[ xml.getAttribute( 'id' ) ] = data;
}
function buildKinematicsModel( data ) {
if ( data.build !== undefined ) return data.build;
return data;
}
function getKinematicsModel( id ) {
return getBuild( library.kinematicsModels[ id ], buildKinematicsModel );
}
function parseKinematicsTechniqueCommon( xml, data ) {
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'joint':
data.joints[ child.getAttribute( 'sid' ) ] = parseKinematicsJoint( child );
break;
case 'link':
data.links.push( parseKinematicsLink( child ) );
break;
}
}
}
function parseKinematicsJoint( xml ) {
let data;
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'prismatic':
case 'revolute':
data = parseKinematicsJointParameter( child );
break;
}
}
return data;
}
function parseKinematicsJointParameter( xml ) {
const data = {
sid: xml.getAttribute( 'sid' ),
name: xml.getAttribute( 'name' ) || '',
axis: new Vector3(),
limits: {
min: 0,
max: 0
},
type: xml.nodeName,
static: false,
zeroPosition: 0,
middlePosition: 0
};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'axis':
const array = parseFloats( child.textContent );
data.axis.fromArray( array );
break;
case 'limits':
const max = child.getElementsByTagName( 'max' )[ 0 ];
const min = child.getElementsByTagName( 'min' )[ 0 ];
data.limits.max = parseFloat( max.textContent );
data.limits.min = parseFloat( min.textContent );
break;
}
}
// if min is equal to or greater than max, consider the joint static
if ( data.limits.min >= data.limits.max ) {
data.static = true;
}
// calculate middle position
data.middlePosition = ( data.limits.min + data.limits.max ) / 2.0;
return data;
}
function parseKinematicsLink( xml ) {
const data = {
sid: xml.getAttribute( 'sid' ),
name: xml.getAttribute( 'name' ) || '',
attachments: [],
transforms: []
};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'attachment_full':
data.attachments.push( parseKinematicsAttachment( child ) );
break;
case 'matrix':
case 'translate':
case 'rotate':
data.transforms.push( parseKinematicsTransform( child ) );
break;
}
}
return data;
}
function parseKinematicsAttachment( xml ) {
const data = {
joint: xml.getAttribute( 'joint' ).split( '/' ).pop(),
transforms: [],
links: []
};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'link':
data.links.push( parseKinematicsLink( child ) );
break;
case 'matrix':
case 'translate':
case 'rotate':
data.transforms.push( parseKinematicsTransform( child ) );
break;
}
}
return data;
}
function parseKinematicsTransform( xml ) {
const data = {
type: xml.nodeName
};
const array = parseFloats( xml.textContent );
switch ( data.type ) {
case 'matrix':
data.obj = new Matrix4();
data.obj.fromArray( array ).transpose();
break;
case 'translate':
data.obj = new Vector3();
data.obj.fromArray( array );
break;
case 'rotate':
data.obj = new Vector3();
data.obj.fromArray( array );
data.angle = MathUtils.degToRad( array[ 3 ] );
break;
}
return data;
}
// physics
function parsePhysicsModel( xml ) {
const data = {
name: xml.getAttribute( 'name' ) || '',
rigidBodies: {}
};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'rigid_body':
data.rigidBodies[ child.getAttribute( 'name' ) ] = {};
parsePhysicsRigidBody( child, data.rigidBodies[ child.getAttribute( 'name' ) ] );
break;
}
}
library.physicsModels[ xml.getAttribute( 'id' ) ] = data;
}
function parsePhysicsRigidBody( xml, data ) {
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'technique_common':
parsePhysicsTechniqueCommon( child, data );
break;
}
}
}
function parsePhysicsTechniqueCommon( xml, data ) {
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'inertia':
data.inertia = parseFloats( child.textContent );
break;
case 'mass':
data.mass = parseFloats( child.textContent )[ 0 ];
break;
}
}
}
// scene
function parseKinematicsScene( xml ) {
const data = {
bindJointAxis: []
};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'bind_joint_axis':
data.bindJointAxis.push( parseKinematicsBindJointAxis( child ) );
break;
}
}
library.kinematicsScenes[ parseId( xml.getAttribute( 'url' ) ) ] = data;
}
function parseKinematicsBindJointAxis( xml ) {
const data = {
target: xml.getAttribute( 'target' ).split( '/' ).pop()
};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
switch ( child.nodeName ) {
case 'axis':
const param = child.getElementsByTagName( 'param' )[ 0 ];
data.axis = param.textContent;
const tmpJointIndex = data.axis.split( 'inst_' ).pop().split( 'axis' )[ 0 ];
data.jointIndex = tmpJointIndex.substr( 0, tmpJointIndex.length - 1 );
break;
}
}
return data;
}
function buildKinematicsScene( data ) {
if ( data.build !== undefined ) return data.build;
return data;
}
function getKinematicsScene( id ) {
return getBuild( library.kinematicsScenes[ id ], buildKinematicsScene );
}
function setupKinematics() {
const kinematicsModelId = Object.keys( library.kinematicsModels )[ 0 ];
const kinematicsSceneId = Object.keys( library.kinematicsScenes )[ 0 ];
const visualSceneId = Object.keys( library.visualScenes )[ 0 ];
if ( kinematicsModelId === undefined || kinematicsSceneId === undefined ) return;
const kinematicsModel = getKinematicsModel( kinematicsModelId );
const kinematicsScene = getKinematicsScene( kinematicsSceneId );
const visualScene = getVisualScene( visualSceneId );
const bindJointAxis = kinematicsScene.bindJointAxis;
const jointMap = {};
for ( let i = 0, l = bindJointAxis.length; i < l; i ++ ) {
const axis = bindJointAxis[ i ];
// the result of the following query is an element of type 'translate', 'rotate','scale' or 'matrix'
const targetElement = collada.querySelector( '[sid="' + axis.target + '"]' );
if ( targetElement ) {
// get the parent of the transform element
const parentVisualElement = targetElement.parentElement;
// connect the joint of the kinematics model with the element in the visual scene
connect( axis.jointIndex, parentVisualElement );
}
}
function connect( jointIndex, visualElement ) {
const visualElementName = visualElement.getAttribute( 'name' );
const joint = kinematicsModel.joints[ jointIndex ];
visualScene.traverse( function ( object ) {
if ( object.name === visualElementName ) {
jointMap[ jointIndex ] = {
object: object,
transforms: buildTransformList( visualElement ),
joint: joint,
position: joint.zeroPosition
};
}
} );
}
const m0 = new Matrix4();
kinematics = {
joints: kinematicsModel && kinematicsModel.joints,
getJointValue: function ( jointIndex ) {
const jointData = jointMap[ jointIndex ];
if ( jointData ) {
return jointData.position;
} else {
console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' doesn\'t exist.' );
}
},
setJointValue: function ( jointIndex, value ) {
const jointData = jointMap[ jointIndex ];
if ( jointData ) {
const joint = jointData.joint;
if ( value > joint.limits.max || value < joint.limits.min ) {
console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' value ' + value + ' outside of limits (min: ' + joint.limits.min + ', max: ' + joint.limits.max + ').' );
} else if ( joint.static ) {
console.warn( 'THREE.ColladaLoader: Joint ' + jointIndex + ' is static.' );
} else {
const object = jointData.object;
const axis = joint.axis;
const transforms = jointData.transforms;
matrix.identity();
// each update, we have to apply all transforms in the correct order
for ( let i = 0; i < transforms.length; i ++ ) {
const transform = transforms[ i ];
// if there is a connection of the transform node with a joint, apply the joint value
if ( transform.sid && transform.sid.indexOf( jointIndex ) !== - 1 ) {
switch ( joint.type ) {
case 'revolute':
matrix.multiply( m0.makeRotationAxis( axis, MathUtils.degToRad( value ) ) );
break;
case 'prismatic':
matrix.multiply( m0.makeTranslation( axis.x * value, axis.y * value, axis.z * value ) );
break;
default:
console.warn( 'THREE.ColladaLoader: Unknown joint type: ' + joint.type );
break;
}
} else {
switch ( transform.type ) {
case 'matrix':
matrix.multiply( transform.obj );
break;
case 'translate':
matrix.multiply( m0.makeTranslation( transform.obj.x, transform.obj.y, transform.obj.z ) );
break;
case 'scale':
matrix.scale( transform.obj );
break;
case 'rotate':
matrix.multiply( m0.makeRotationAxis( transform.obj, transform.angle ) );
break;
}
}
}
object.matrix.copy( matrix );
object.matrix.decompose( object.position, object.quaternion, object.scale );
jointMap[ jointIndex ].position = value;
}
} else {
console.log( 'THREE.ColladaLoader: ' + jointIndex + ' does not exist.' );
}
}
};
}
function buildTransformList( node ) {
const transforms = [];
const xml = collada.querySelector( '[id="' + node.id + '"]' );
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
let array, vector;
switch ( child.nodeName ) {
case 'matrix':
array = parseFloats( child.textContent );
const matrix = new Matrix4().fromArray( array ).transpose();
transforms.push( {
sid: child.getAttribute( 'sid' ),
type: child.nodeName,
obj: matrix
} );
break;
case 'translate':
case 'scale':
array = parseFloats( child.textContent );
vector = new Vector3().fromArray( array );
transforms.push( {
sid: child.getAttribute( 'sid' ),
type: child.nodeName,
obj: vector
} );
break;
case 'rotate':
array = parseFloats( child.textContent );
vector = new Vector3().fromArray( array );
const angle = MathUtils.degToRad( array[ 3 ] );
transforms.push( {
sid: child.getAttribute( 'sid' ),
type: child.nodeName,
obj: vector,
angle: angle
} );
break;
}
}
return transforms;
}
// nodes
function prepareNodes( xml ) {
const elements = xml.getElementsByTagName( 'node' );
// ensure all node elements have id attributes
for ( let i = 0; i < elements.length; i ++ ) {
const element = elements[ i ];
if ( element.hasAttribute( 'id' ) === false ) {
element.setAttribute( 'id', generateId() );
}
}
}
const matrix = new Matrix4();
const vector = new Vector3();
function parseNode( xml ) {
const data = {
name: xml.getAttribute( 'name' ) || '',
type: xml.getAttribute( 'type' ),
id: xml.getAttribute( 'id' ),
sid: xml.getAttribute( 'sid' ),
matrix: new Matrix4(),
nodes: [],
instanceCameras: [],
instanceControllers: [],
instanceLights: [],
instanceGeometries: [],
instanceNodes: [],
transforms: {}
};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
if ( child.nodeType !== 1 ) continue;
let array;
switch ( child.nodeName ) {
case 'node':
data.nodes.push( child.getAttribute( 'id' ) );
parseNode( child );
break;
case 'instance_camera':
data.instanceCameras.push( parseId( child.getAttribute( 'url' ) ) );
break;
case 'instance_controller':
data.instanceControllers.push( parseNodeInstance( child ) );
break;
case 'instance_light':
data.instanceLights.push( parseId( child.getAttribute( 'url' ) ) );
break;
case 'instance_geometry':
data.instanceGeometries.push( parseNodeInstance( child ) );
break;
case 'instance_node':
data.instanceNodes.push( parseId( child.getAttribute( 'url' ) ) );
break;
case 'matrix':
array = parseFloats( child.textContent );
data.matrix.multiply( matrix.fromArray( array ).transpose() );
data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
break;
case 'translate':
array = parseFloats( child.textContent );
vector.fromArray( array );
data.matrix.multiply( matrix.makeTranslation( vector.x, vector.y, vector.z ) );
data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
break;
case 'rotate':
array = parseFloats( child.textContent );
const angle = MathUtils.degToRad( array[ 3 ] );
data.matrix.multiply( matrix.makeRotationAxis( vector.fromArray( array ), angle ) );
data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
break;
case 'scale':
array = parseFloats( child.textContent );
data.matrix.scale( vector.fromArray( array ) );
data.transforms[ child.getAttribute( 'sid' ) ] = child.nodeName;
break;
case 'extra':
break;
default:
console.log( child );
}
}
if ( hasNode( data.id ) ) {
console.warn( 'THREE.ColladaLoader: There is already a node with ID %s. Exclude current node from further processing.', data.id );
} else {
library.nodes[ data.id ] = data;
}
return data;
}
function parseNodeInstance( xml ) {
const data = {
id: parseId( xml.getAttribute( 'url' ) ),
materials: {},
skeletons: []
};
for ( let i = 0; i < xml.childNodes.length; i ++ ) {
const child = xml.childNodes[ i ];
switch ( child.nodeName ) {
case 'bind_material':
const instances = child.getElementsByTagName( 'instance_material' );
for ( let j = 0; j < instances.length; j ++ ) {
const instance = instances[ j ];
const symbol = instance.getAttribute( 'symbol' );
const target = instance.getAttribute( 'target' );
data.materials[ symbol ] = parseId( target );
}
break;
case 'skeleton':
data.skeletons.push( parseId( child.textContent ) );
break;
default:
break;
}
}
return data;
}
function buildSkeleton( skeletons, joints ) {
const boneData = [];
const sortedBoneData = [];
let i, j, data;
// a skeleton can have multiple root bones. collada expresses this
// situtation with multiple "skeleton" tags per controller instance
for ( i = 0; i < skeletons.length; i ++ ) {
const skeleton = skeletons[ i ];
let root;
if ( hasNode( skeleton ) ) {
root = getNode( skeleton );
buildBoneHierarchy( root, joints, boneData );
} else if ( hasVisualScene( skeleton ) ) {
// handle case where the skeleton refers to the visual scene (#13335)
const visualScene = library.visualScenes[ skeleton ];
const children = visualScene.children;
for ( let j = 0; j < children.length; j ++ ) {
const child = children[ j ];
if ( child.type === 'JOINT' ) {
const root = getNode( child.id );
buildBoneHierarchy( root, joints, boneData );
}
}
} else {
console.error( 'THREE.ColladaLoader: Unable to find root bone of skeleton with ID:', skeleton );
}
}
// sort bone data (the order is defined in the corresponding controller)
for ( i = 0; i < joints.length; i ++ ) {
for ( j = 0; j < boneData.length; j ++ ) {
data = boneData[ j ];
if ( data.bone.name === joints[ i ].name ) {
sortedBoneData[ i ] = data;
data.processed = true;
break;
}
}
}
// add unprocessed bone data at the end of the list
for ( i = 0; i < boneData.length; i ++ ) {
data = boneData[ i ];
if ( data.processed === false ) {
sortedBoneData.push( data );
data.processed = true;
}
}
// setup arrays for skeleton creation
const bones = [];
const boneInverses = [];
for ( i = 0; i < sortedBoneData.length; i ++ ) {
data = sortedBoneData[ i ];
bones.push( data.bone );
boneInverses.push( data.boneInverse );
}
return new Skeleton( bones, boneInverses );
}
function buildBoneHierarchy( root, joints, boneData ) {
// setup bone data from visual scene
root.traverse( function ( object ) {
if ( object.isBone === true ) {
let boneInverse;
// retrieve the boneInverse from the controller data
for ( let i = 0; i < joints.length; i ++ ) {
const joint = joints[ i ];
if ( joint.name === object.name ) {
boneInverse = joint.boneInverse;
break;
}
}
if ( boneInverse === undefined ) {
// Unfortunately, there can be joints in the visual scene that are not part of the
// corresponding controller. In this case, we have to create a dummy boneInverse matrix
// for the respective bone. This bone won't affect any vertices, because there are no skin indices
// and weights defined for it. But we still have to add the bone to the sorted bone list in order to
// ensure a correct animation of the model.
boneInverse = new Matrix4();
}
boneData.push( { bone: object, boneInverse: boneInverse, processed: false } );
}
} );
}
function buildNode( data ) {
const objects = [];
const matrix = data.matrix;
const nodes = data.nodes;
const type = data.type;
const instanceCameras = data.instanceCameras;
const instanceControllers = data.instanceControllers;
const instanceLights = data.instanceLights;
const instanceGeometries = data.instanceGeometries;
const instanceNodes = data.instanceNodes;
// nodes
for ( let i = 0, l = nodes.length; i < l; i ++ ) {
objects.push( getNode( nodes[ i ] ) );
}
// instance cameras
for ( let i = 0, l = instanceCameras.length; i < l; i ++ ) {
const instanceCamera = getCamera( instanceCameras[ i ] );
if ( instanceCamera !== null ) {
objects.push( instanceCamera.clone() );
}
}
// instance controllers
for ( let i = 0, l = instanceControllers.length; i < l; i ++ ) {
const instance = instanceControllers[ i ];
const controller = getController( instance.id );
const geometries = getGeometry( controller.id );
const newObjects = buildObjects( geometries, instance.materials );
const skeletons = instance.skeletons;
const joints = controller.skin.joints;
const skeleton = buildSkeleton( skeletons, joints );
for ( let j = 0, jl = newObjects.length; j < jl; j ++ ) {
const object = newObjects[ j ];
if ( object.isSkinnedMesh ) {
object.bind( skeleton, controller.skin.bindMatrix );
object.normalizeSkinWeights();
}
objects.push( object );
}
}
// instance lights
for ( let i = 0, l = instanceLights.length; i < l; i ++ ) {
const instanceLight = getLight( instanceLights[ i ] );
if ( instanceLight !== null ) {
objects.push( instanceLight.clone() );
}
}
// instance geometries
for ( let i = 0, l = instanceGeometries.length; i < l; i ++ ) {
const instance = instanceGeometries[ i ];
// a single geometry instance in collada can lead to multiple object3Ds.
// this is the case when primitives are combined like triangles and lines
const geometries = getGeometry( instance.id );
const newObjects = buildObjects( geometries, instance.materials );
for ( let j = 0, jl = newObjects.length; j < jl; j ++ ) {
objects.push( newObjects[ j ] );
}
}
// instance nodes
for ( let i = 0, l = instanceNodes.length; i < l; i ++ ) {
objects.push( getNode( instanceNodes[ i ] ).clone() );
}
let object;
if ( nodes.length === 0 && objects.length === 1 ) {
object = objects[ 0 ];
} else {
object = ( type === 'JOINT' ) ? new Bone() : new Group();
for ( let i = 0; i < objects.length; i ++ ) {
object.add( objects[ i ] );
}
}
object.name = ( type === 'JOINT' ) ? data.sid : data.name;
object.matrix.copy( matrix );
object.matrix.decompose( object.position, object.quaternion, object.scale );
return object;
}
const fallbackMaterial = new MeshBasicMaterial( { color: 0xff00ff } );
function resolveMaterialBinding( keys, instanceMaterials ) {
const materials = [];
for ( let i = 0, l = keys.length; i < l; i ++ ) {
const id = instanceMaterials[ keys[ i ] ];
if ( id === undefined ) {
console.warn( 'THREE.ColladaLoader: Material with key %s not found. Apply fallback material.', keys[ i ] );
materials.push( fallbackMaterial );
} else {
materials.push( getMaterial( id ) );
}
}
return materials;
}
function buildObjects( geometries, instanceMaterials ) {
const objects = [];
for ( const type in geometries ) {
const geometry = geometries[ type ];
const materials = resolveMaterialBinding( geometry.materialKeys, instanceMaterials );
// handle case if no materials are defined
if ( materials.length === 0 ) {
if ( type === 'lines' || type === 'linestrips' ) {
materials.push( new LineBasicMaterial() );
} else {
materials.push( new MeshPhongMaterial() );
}
}
// regard skinning
const skinning = ( geometry.data.attributes.skinIndex !== undefined );
// choose between a single or multi materials (material array)
const material = ( materials.length === 1 ) ? materials[ 0 ] : materials;
// now create a specific 3D object
let object;
switch ( type ) {
case 'lines':
object = new LineSegments( geometry.data, material );
break;
case 'linestrips':
object = new Line( geometry.data, material );
break;
case 'triangles':
case 'polylist':
if ( skinning ) {
object = new SkinnedMesh( geometry.data, material );
} else {
object = new Mesh( geometry.data, material );
}
break;
}
objects.push( object );
}
return objects;
}
function hasNode( id ) {
return library.nodes[ id ] !== undefined;
}
function getNode( id ) {
return getBuild( library.nodes[ id ], buildNode );
}
// visual scenes
function parseVisualScene( xml ) {
const data = {
name: xml.getAttribute( 'name' ),
children: []
};
prepareNodes( xml );
const elements = getElementsByTagName( xml, 'node' );
for ( let i = 0; i < elements.length; i ++ ) {
data.children.push( parseNode( elements[ i ] ) );
}
library.visualScenes[ xml.getAttribute( 'id' ) ] = data;
}
function buildVisualScene( data ) {
const group = new Group();
group.name = data.name;
const children = data.children;
for ( let i = 0; i < children.length; i ++ ) {
const child = children[ i ];
group.add( getNode( child.id ) );
}
return group;
}
function hasVisualScene( id ) {
return library.visualScenes[ id ] !== undefined;
}
function getVisualScene( id ) {
return getBuild( library.visualScenes[ id ], buildVisualScene );
}
// scenes
function parseScene( xml ) {
const instance = getElementsByTagName( xml, 'instance_visual_scene' )[ 0 ];
return getVisualScene( parseId( instance.getAttribute( 'url' ) ) );
}
function setupAnimations() {
const clips = library.clips;
if ( isEmpty( clips ) === true ) {
if ( isEmpty( library.animations ) === false ) {
// if there are animations but no clips, we create a default clip for playback
const tracks = [];
for ( const id in library.animations ) {
const animationTracks = getAnimation( id );
for ( let i = 0, l = animationTracks.length; i < l; i ++ ) {
tracks.push( animationTracks[ i ] );
}
}
animations.push( new AnimationClip( 'default', - 1, tracks ) );
}
} else {
for ( const id in clips ) {
animations.push( getAnimationClip( id ) );
}
}
}
// convert the parser error element into text with each child elements text
// separated by new lines.
function parserErrorToText( parserError ) {
let result = '';
const stack = [ parserError ];
while ( stack.length ) {
const node = stack.shift();
if ( node.nodeType === Node.TEXT_NODE ) {
result += node.textContent;
} else {
result += '\n';
stack.push.apply( stack, node.childNodes );
}
}
return result.trim();
}
if ( text.length === 0 ) {
return { scene: new Scene() };
}
const xml = new DOMParser().parseFromString( text, 'application/xml' );
const collada = getElementsByTagName( xml, 'COLLADA' )[ 0 ];
const parserError = xml.getElementsByTagName( 'parsererror' )[ 0 ];
if ( parserError !== undefined ) {
// Chrome will return parser error with a div in it
const errorElement = getElementsByTagName( parserError, 'div' )[ 0 ];
let errorText;
if ( errorElement ) {
errorText = errorElement.textContent;
} else {
errorText = parserErrorToText( parserError );
}
console.error( 'THREE.ColladaLoader: Failed to parse collada file.\n', errorText );
return null;
}
// metadata
const version = collada.getAttribute( 'version' );
console.log( 'THREE.ColladaLoader: File version', version );
const asset = parseAsset( getElementsByTagName( collada, 'asset' )[ 0 ] );
const textureLoader = new TextureLoader( this.manager );
textureLoader.setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin );
let tgaLoader;
if ( TGALoader ) {
tgaLoader = new TGALoader( this.manager );
tgaLoader.setPath( this.resourcePath || path );
}
//
const tempColor = new Color();
const animations = [];
let kinematics = {};
let count = 0;
//
const library = {
animations: {},
clips: {},
controllers: {},
images: {},
effects: {},
materials: {},
cameras: {},
lights: {},
geometries: {},
nodes: {},
visualScenes: {},
kinematicsModels: {},
physicsModels: {},
kinematicsScenes: {}
};
parseLibrary( collada, 'library_animations', 'animation', parseAnimation );
parseLibrary( collada, 'library_animation_clips', 'animation_clip', parseAnimationClip );
parseLibrary( collada, 'library_controllers', 'controller', parseController );
parseLibrary( collada, 'library_images', 'image', parseImage );
parseLibrary( collada, 'library_effects', 'effect', parseEffect );
parseLibrary( collada, 'library_materials', 'material', parseMaterial );
parseLibrary( collada, 'library_cameras', 'camera', parseCamera );
parseLibrary( collada, 'library_lights', 'light', parseLight );
parseLibrary( collada, 'library_geometries', 'geometry', parseGeometry );
parseLibrary( collada, 'library_nodes', 'node', parseNode );
parseLibrary( collada, 'library_visual_scenes', 'visual_scene', parseVisualScene );
parseLibrary( collada, 'library_kinematics_models', 'kinematics_model', parseKinematicsModel );
parseLibrary( collada, 'library_physics_models', 'physics_model', parsePhysicsModel );
parseLibrary( collada, 'scene', 'instance_kinematics_scene', parseKinematicsScene );
buildLibrary( library.animations, buildAnimation );
buildLibrary( library.clips, buildAnimationClip );
buildLibrary( library.controllers, buildController );
buildLibrary( library.images, buildImage );
buildLibrary( library.effects, buildEffect );
buildLibrary( library.materials, buildMaterial );
buildLibrary( library.cameras, buildCamera );
buildLibrary( library.lights, buildLight );
buildLibrary( library.geometries, buildGeometry );
buildLibrary( library.visualScenes, buildVisualScene );
setupAnimations();
setupKinematics();
const scene = parseScene( getElementsByTagName( collada, 'scene' )[ 0 ] );
scene.animations = animations;
if ( asset.upAxis === 'Z_UP' ) {
scene.quaternion.setFromEuler( new Euler( - Math.PI / 2, 0, 0 ) );
}
scene.scale.multiplyScalar( asset.unit );
return {
get animations() {
console.warn( 'THREE.ColladaLoader: Please access animations over scene.animations now.' );
return animations;
},
kinematics: kinematics,
library: library,
scene: scene
};
}